ABB GENERAL PURPOSE DRIVES

ACS580 standard control program Firmware manual

Related documents are listed on page 15.

Firmware manual

ACS580 standard control program

Table of contents

1. Introduction to the manual
2. Start-up, control with I/O and ID run
3. Control panel
4. Settings, I/O and diagnostics on the control panel
5. Control macros
6. Program features
7. Parameters
8. Additional parameter data
9. Fault tracing
10. Fieldbus control through the embedded fieldbus interface (EFB)
11. Fieldbus control through a fieldbus adapter
12. Control chain diagrams

Further information

Table of contents

1. Introduction to the manual
Contents of this chapter 13
Applicability 13
Safety instructions 13
Target audience 13
Purpose of the manual 14
Contents of this manual 14
Related documents 15
Cybersecurity disclaimer 20
2. Start-up, control with I/O and ID run
Contents of this chapter 21
How to start up the drive 22
How to start up the drive using the First start assistant on the assistant control panel 22
How to control the drive through the I/O interface 33
How to perform the ID run 35
ID run procedure 36
3. Control panel
Contents of this chapter 41
Removing and reinstalling the control panel 41
Layout of the control panel 42
Layout of the control panel display 43
Home view displays 45
Keys 46
Key shortcuts 47
4. Settings, I/O and diagnostics on the control panel
Contents of this chapter 49
Primary settings menu 50
Macro 52
Motor 52
Start, stop, reference 54
Ramps 56
Limits 57
PID 58
Pump and fan control 60
Fieldbus 61
Advanced functions 63
Clock, region, display 66
Reset to defaults 67
I/O menu 69
Diagnostics menu 70
System info menu 71
Energy efficiency menu 73
Backups menu 75
Options menu 75
5. Control macros
Contents of this chapter 77
General 77
ABB standard macro 78
Default control connections for the ABB standard macro 78
ABB standard (vector) macro 80
Default control connections for the ABB standard (vector) macro 80
3-wire macro 82
Default control connections for the 3-wire macro 82
Alternate macro 84
Default control connections for the Alternate macro 84
Motor potentiometer macro 86
Default control connections for the Motor potentiometer macro 86
Hand/Auto macro 88
Default control connections for the Hand/Auto macro 88
Hand/PID macro 90
Default control connections for the Hand/PID macro 90
PID macro 92
Default control connections for the PID macro 92
Panel PID macro 94
Default control connections for the Panel PID macro 94
PFC macro 96
Default control connections for the PFC macro 96
Torque control macro 98
Default control connections for the Torque control macro 98
Parameter default values for different macros 100
6. Program features
What this chapter contains 107
Local control vs. external control 107
Local control 108
External control 109
Operating modes of the drive 112
Speed control mode 114
Torque control mode 114
Frequency control mode 114
Special control modes 115
Drive configuration and programming 116
Configuring via parameters 116
Adaptive programming 117
Control interfaces 121
Programmable analog inputs 121
Programmable analog outputs 121
Programmable digital inputs and outputs 121
Programmable frequency input and output 121
Programmable relay outputs 122
Programmable I/O extensions 122
Fieldbus control 123
Application control 123
Reference ramping 123
Constant speeds/frequencies 124
Critical speeds/frequencies 125
Speed controller autotune 126
User load curve 129
Control macros 130
Process PID control 131
PID trim function 135
Pump and fan control (PFC) 142
Timed functions 149
Motor potentiometer 150
Mechanical brake control 152
Motor control 156
Motor types 156
Motor identification 156
Scalar motor control 156
Vector motor control 157
Speed control performance figures 158
Torque control performance figures 159
Power loss ride-through 159
U/f ratio 159
Flux braking 160
DC magnetization 161
Energy optimization 164
Switching frequency 164
Rush control 165
Jogging 165
Speed compensated stop 168
DC voltage control 169
Overvoltage control 169
Undervoltage control (power loss ride-through) 169
Voltage control and trip limits 172
Brake chopper 175
Safety and protections 176
Fixed/Standard protections 176
Emergency stop 176
Motor thermal protection 177
Motor overload protection 182
Programmable protection functions 183
Automatic fault resets 185
Diagnostics 186
Signal supervision 186
Energy saving calculators 186
Load analyzer 187
Diagnostics menu 188

8 Table of contents

Miscellaneous 189
Backup and restore 189
User parameter sets 190
Data storage parameters 191
Parameter checksum calculation 191
User lock 192
Sine filter support 192
7. Parameters
What this chapter contains 195
Terms and abbreviations 196
Summary of parameter groups 197
Parameter listing 199
01 Actual values 199
03 Input references 202
04 Warnings and faults 203
05 Diagnostics 205
06 Control and status words 208
07 System info 214
10 Standard DI, RO 216
11 Standard DIO, FI, FO 225
12 Standard AI 226
13 Standard AO 231
15 I/O extension module 236
19 Operation mode 245
20 Start/stop/direction 247
21 Start/stop mode 257
22 Speed reference selection 266
23 Speed reference ramp 276
24 Speed reference conditioning 280
25 Speed control 280
26 Torque reference chain 286
28 Frequency reference chain 290
30 Limits 301
31 Fault functions 309
32 Supervision 319
34 Timed functions 327
35 Motor thermal protection 335
36 Load analyzer 346
37 User load curve 349
40 Process PID set 1 353
41 Process PID set 2 369
43 Brake chopper 371
44 Mechanical brake control 373
45 Energy efficiency 375
46 Monitoring/scaling settings 379
47 Data storage 383
49 Panel port communication 384
50 Fieldbus adapter (FBA) 386
51 FBA A settings 390
52 FBA A data in 392
53 FBA A data out 392
58 Embedded fieldbus 393
71 External PID1 400
76 PFC configuration 403
77 PFC maintenance and monitoring 411
95 HW configuration 412
96 System 415
97 Motor control 425
98 User motor parameters 429
99 Motor data 431
Differences in the default values between 50 Hz and 60 Hz supply frequency settings 437
Parameters supported by Modbus backwards compatibility with 550 439
8. Additional parameter data
What this chapter contains 443
Terms and abbreviations 443
Fieldbus addresses 444
Parameter groups 1... 9 445
Parameter groups 10... 99 448
9. Fault tracing
What this chapter contains 479
Safety 479
Indications 479
Warnings and faults 479
Pure events 480
Editable messages 480
Warning/fault history 480
Event log 480
Viewing warning/fault information 481
QR code generation for mobile service application 481
Warning messages 482
Fault messages 493
10. Fieldbus control through the embedded fieldbus interface (EFB)
What this chapter contains 505
System overview 505
Connecting the drive to the fieldbus 507
Setting up the embedded fieldbus interface 508
Setting the drive control parameters 509
Basics of the embedded fieldbus interface 511
Control word and Status word 512
References 512
Actual values 512
Data input/outputs 512
Register addressing 512
About the control profiles 514
Control Word 515
Control Word for the ABB Drives profile 515
Control Word for the DCU Profile 516
Status Word 519
Status Word for the ABB Drives profile 519
Status Word for the DCU Profile 520
State transition diagrams 522
State transition diagram for the ABB Drives profile 522
References 525
References for the ABB Drives profile and DCU Profile 525
Actual values 526
Actual values for the ABB Drives profile and DCU Profile 526
Modbus holding register addresses 527
Modbus holding register addresses for the ABB Drives profile and DCU Profile 527
Modbus function codes 528
Exception codes 529
Coils (0xxxx reference set) 530
Discrete inputs (1xxxx reference set) 532
Error code registers (holding registers 400090...400100) 534
11. Fieldbus control through a fieldbus adapter
What this chapter contains 535
System overview 535
Basics of the fieldbus control interface 537
Control word and Status word 538
References 539
Actual values 540
Contents of the fieldbus Control word (ABB Drives profile) 541
Contents of the fieldbus Status word (ABB Drives profile) 543
The state diagram (ABB Drives profile) 544
Setting up the drive for fieldbus control 545
Parameter setting example: FPBA (PROFIBUS DP) with ABB Drives profile 546
Automatic drive configuration for fieldbus control 548
12. Control chain diagrams
Contents of this chapter 551
Frequency reference selection 552
Frequency reference modification 553
Speed reference source selection I 554
Speed reference source selection II 555
Speed reference ramping and shaping 556
Speed error calculation 557
Speed feedback 558
Speed controller 559
Torque reference source selection and modification 560
Reference selection for torque controller 561
Torque limitation 562
Process PID setpoint and feedback source selection 563
Process PID controller 564
External PID setpoint and feedback source selection 565
External PID controller 566
Direction lock 567
PID trim auto connection 568
Further information

Introduction to the manual

Contents of this chapter

The chapter describes applicability, target audience and purpose of this manual. It also describes the contents of this manual and refers to a list of related manuals for more information.

Applicability

The manual applies to the ACS580 standard control program ASCKX version 2.11. ASCK2 is used for frame sizes R1...R5, and ASCK4 is used for frames sizes R6...R11.

To check the firmware version of the control program in use, see system information (select Menu - System info - Drive) or parameter 07.05 Firmware version (see page 214) on the control panel.

Safety instructions

Follow all safety instructions.

- Read the complete safety instructions in the Hardware manual of the drive before you install, commission, or use the drive.
- Read the firmware function-specific warnings and notes before changing parameter values. These warnings and notes are included in the parameter descriptions presented in chapter Parameters on page 195.

Target audience

The reader is expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

The manual is written for readers worldwide. Both SI and imperial units are shown. Special US instructions for installations in the United States are given.

Purpose of the manual

This manual provides information needed for designing, commissioning, or operating the drive system.

Contents of this manual

The manual consists of the following chapters:

- Introduction to the manual (this chapter, page 13) describes applicability, target audience, purpose and contents of this manual. At the end, it lists terms and abbreviations.
- Start-up, control with I/O and ID run (page 21) describes how to start up the drive as well as how to start, stop, change the direction of the motor rotation and adjust the motor speed through the I/O interface.
- Control panel (page 41) contains instructions for removing and reinstalling the assistant control panel and briefly describes its display, keys and key shortcuts.
- Settings, I/O and diagnostics on the control panel (page 49) describes the simplified settings and diagnostic functions provided on the assistant control panel.
- Control macros (page 77) contains a short description of each macro together with a connection diagram. Macros are pre-defined applications which will save the user time when configuring the drive.
- Program features (page 107) describes program features with lists of related user settings, actual signals, and fault and warning messages.
- Parameters (page 195) describes the parameters used to program the drive.
- Additional parameter data (page 443) contains further information on the parameters.
- Fieldbus control through the embedded fieldbus interface (EFB) (page 505) describes the communication to and from a fieldbus network using the drive embedded fieldbus interface with the Modbus RTU protocol.
- Fieldbus control through a fieldbus adapter (page 535) describes the communication to and from a fieldbus network using an optional fieldbus adapter module.
- Fault tracing (page 479) lists the warning and fault messages with possible causes and remedies.
- Control chain diagrams (page 551) describes the parameter structure within the drive.
- Further information (inside of the back cover, page 569) describes how to make product and service inquiries, get information on product training, provide feedback on ABB Drives manuals and find documents on the Internet.

Related documents

You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative
Drive manuals and guides Code (English)Drive/converter/inverter safety instructions3AXD50000037978
ACS580-01 (0.75 to $250 \mathrm{~kW}, 1.0$ to 350 hp) hardware 3AXD50000044794manualACS580-01 frames R1 to R5 quick installation and start- 3AXD50000044838up guide
ACS580-
up guide
ACS580-04 drive modules (250 to 500 kW) hardware 3AXD50000015497manual
ACS580-04 modules (250 to 500 kW) quick 3AXD50000015469installation guideACS580-07 drives (75 to 500 kW) hardware 3AXD50000045815manual
$A C x-A P-x$ assistant control panels user's manual 3AUA0000085685
ACS-BP-S basic control panels user's manual 3AXD50000032527
Option manuals and guides Code (English)
ACS580, ACH580 and ACQ580 drive module frames R3 3AXD50000210305
and R5 to R9 for cabinet installation (options +P940 and
+P944) supplement
ACS580-01, ACH580-01 and ACQ580-01 installation 3AXD50000034735guide for UK gland plate (option + H358)
CPTC-02 ATEX-certified thermistor protection module, 3AXD50000030058
Ex II (2) GD (+L537+Q971) user's manual
CDPI-01 communication adapter module user's manual 3AXD50000009929
DPMP-01 mounting platform for control panels 3AUA0000100140
DPMP-02/03 mounting platform for control panels 3AUA0000136205
DPMP-04 and DPMP-05 mounting platform for control 3AXD50000308484
FCAN-01 CANopen adapter module user's manual 3AFE68615500
FCNA-01 ControlNet adapter module user's manual 3AUA0000141650
FDNA-01 DeviceNet ${ }^{\text {TM }}$ adapter module user's manual 3AFE68573360
FECA-01 EtherCAT adapter module user's manual 3AUA0000068940
FEIP-21 Ethernet/IP adapter module user's manual 3AXD50000158621
FENA-01/-11/-21 Ethernet adapter module user's 3AUA0000093568
manualFEPL-02 Ethernet POWERLINK adapter module user's 3AUA0000123527manualFMBT-21 Modbus/TCP adapter module user's manual 3AXD50000158607FPBA-01 PROFIBUS DP adapter module user's manual 3AFE68573271

FPNO-21 PROFINET adapter module user's manual	3AXD50000158614
FSCA-01 RS-485 adapter module user's manual	3AUA0000109533
FSPS-21 Safety functions fieldbus module user's manual	3AXD50000158638
ACS580-01 ..., ACH580-01 ... and ACQ580-01 ...+C135 drives with flange mounting kit supplement	3AXD50000019100
ACS580-01 ..., ACH580-01 ... and ACQ580-01 ...+C135 frames R1 to R3 flange mounting kit quick installation guide	$3 A X D 50000119172$
ACS580-01 ..., ACH580-01 ... and ACQ580-01 ...+C135 frames R4 to R5 flange mounting kit quick installation guide	$3 A X D 50000287093$
ACS880-01 ..., ACS580-01..., ACH580-01 ... and ACQ580-01 ...+C135 frames R6 to R9 flange mounting kit quick installation guide	3AXD50000019099
Main switch and EMC C1 filter options (+F278, +F316, + E223) installation supplement for ACS580-01, ACH580-01 and ACQ580-01 frames R1 to R5	$3 A X D 50000155132$
UL Type 12 hood quick installation guide for ACS58001, ACH580-01 and ACQ580-01 frames R1 to R9	3AXD50000196067
Tool and maintenance manuals and guides	Code (English)
Drive composer PC tool user's manual	3AUA0000094606
Converter module capacitor reforming instructions	3BFE64059629
NETA-21 remote monitoring tool user's manual	3AUA00000969391
NETA-21 remote monitoring tool installation and start-up guide	3AUA0000096881

The code(s) below open online listings of the manuals applicable to the products.

ACS580-01 manuals

ACS580-04 manuals

Terms and abbreviations

Term/abbreviation	Explanation
ACS-BP-S	Basic control panel, basic operator keypad for communication with the drive.
ACX-AP-x	Assistant control panel, advanced operator keypad for communication with the drive. The ACS580 supports types ACS-AP-I, ACS-AP-S and ACS-AP-W (with a Bluetooth interface).
AI	Analog input; interface for analog input signals
AO	Analog output; interface for analog output signals
Brake chopper	Conducts the surplus energy from the intermediate circuit of the drive to the brake resistor when necessary. The chopper operates when the DC link voltage exceeds a certain maximum limit. The voltage rise is typically caused by deceleration (braking) of a high inertia motor.
Brake resistor	Dissipates the drive surplus braking energy conducted by the brake chopper to heat. Essential part of the brake circuit. See chapter Brake chopper in the Hardware manual of the drive.
Control board	Circuit board in which the control program runs.
Control unit	Control board built in a housing
CBAI-01	Bipolar to unipolar voltage converter option module
CDPI-01	Communication adapter module
CCA-01	Configuration adapter
CHDI-01	Optional 115/230 V digital input extension module
CMOD-01	Optional multifunction extension module (external $24 \mathrm{~V} \mathrm{AC/DC}$ and digital I/O extension)
CMOD-02	Optional multifunction extension module (external 24 V AC/DC and isolated PTC interface)
CPTC-02	Optional multifunction extension module (external 24 V and ATEX certified PTC interface)
DC link	DC circuit between rectifier and inverter
DC link capacitors	Energy storage which stabilizes the intermediate circuit DC voltage
DI	Digital input; interface for digital input signals
DO	Digital output; interface for digital output signals
DPMP-01	Mounting platform for ACX-AP control panel (flange mounting)
DPMP-02/03	Mounting platform for ACX-AP control panel (surface mounting)
Drive	Frequency converter for controlling AC motors
EFB	Embedded fieldbus
FBA	Fieldbus adapter
FCAN-01	Optional CANopen adapter module
FCNA-01	ControlNet adapter module
FDNA-01	Optional DeviceNet adapter module

Term/abbreviation	Explanation
FECA-01	Optional EtherCAT adapter module
FENA-21	Optional Ethernet adapter module for EtherNet/IP, Modbus/TCP and PROFINET IO protocols
FEIP-21	Optional EtherNet/IP adapter module
FEPL-02	Ethernet POWERLINK adapter module
FMBT-21	Optional Modbus/TCP adapter module
FPBA-01	Optional PROFIBUS DP adapter module
FPNO-21	Optional PROFINET IO adapter module Resers to drive physical size, for example R1 and R2. The type chapter Operation principle and hardware description, section Type designation label in the Hardware manual of the drive.
Frame (size)	Optional RSA-485 adapter module (Modbus/RTU)
FSCA-01	Motor identification run. During the identification run, the drive will identify the characteristics of the motor for optimum motor control.
ID run	Insulated gate bipolar transistor
IGBT	See DC link.
Intermediate circuit	
Inverter	Converts direct current and voltage to alternating current and voltage.
I/O	Input/Output
LSW	Least significant word Pre-defined default values of parameters in drive control program. Each macro is intended for a specific application. See chapter Control macros on page 77.
Macro	Remote monitoring tool PLCRegistered trademarks of PI - PROFIBUS \& PROFINET International PROFIBUS, PROFIBUS DP, PROFINET IO (CIP fieldbus protocols based on the Common Industrial Protocol as DeviceNet and Ethernet/IP, denotes the control of the drive using the Net Ctrl and Net Ref objects of the ODVA AC/DC Drive Profile. For more information, see www.odva.org, and the following manuals: - FDNA-01 DeviceNet adapter module user's manual (3AFE68573360 [English]), and NETA-21 Network control Parameter PENA-01/-11/-21 Ethernet adapter module user's manual (3AUA0000093568 [English]).
User-adjustable operation instruction to the drive, or signal measured or calculated by the drive	

Term/abbreviation	Explanation
PTC	Positive temperature coefficient, thermistor whose resistance is dependent on temperature,
R1, R2,..	Frame (size)
RO	Relay output; interface for a digital output signal. Implemented with a relay.
Rectifier	Converts alternating current and voltage to direct current and voltage.
STO	Safe torque off. See chapter The Safe torque off function in the Hardware manual of the drive.

Cybersecurity disclaimer

This product is designed to be connected to and to communicate information and data via a network interface. It is Customer's sole responsibility to provide and continuously ensure a secure connection between the product and Customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

See also section User lock on page 192.

Start-up, control with I/O and ID run

Contents of this chapter

The chapter describes how to:

- perform the start-up
- start, stop, change the direction of the motor rotation and adjust the speed of the motor through the I/O interface
- perform an Identification run (ID run) for the drive.

How to start up the drive

How to start up the drive using the First start assistant on the assistant control panel

\square	The First start assistant guides you through the first start-up. The assistant begins automatically. Wait until the control panel enters the view shown on the right. Select the language you want to use by highlighting it (if not already highlighted) and pressing \square (OK). Note: After you have selected the language, it takes a few minutes to download the language file to the control panel.	English Deutsch Suomi Français Italiano Nederlands Syenska	
\square	Select Start set-up and press \square (Next).		
		Back 15:52	Next
\square	Select the localization you want to use and press\square (Next).		
		Back 15.52	Next
\square	Change the units shown on the panel if needed. - Go to the edit view of a selected row by pressing \downarrow. - Scroll the view with \triangle and \square. Go to the next view by pressing \curvearrowleft (Next).	Local ¢ ¢ ACS580	$* 0.0 \mathrm{~Hz}$
		Units	
		Power:	kW
		Temperature:	${ }^{\circ} \mathrm{C}$
		Currency:	
		Back 15:53	Next
\square	Set the date and time as well as date and time display formats. - Go to the edit view of a selected row by pressing \triangle. - Scroll the view with \triangle and ∇. Go to the next view by pressing \nearrow (Next).	Local ¢ \times ACS580 $\quad \div 0.0 \mathrm{~Hz}$	
		Date \& time Flease enter the current date and time.	
		Date 04.07.2014 ${ }^{\text {P }}$	
		Time $15: 54: 04$ Show date as day.month. year Show time as 24 -hour	
		Back 15:54	Next

Refer to the motor nameplate for the following nominal value settings of the motor. Enter the values exactly as shown on the motor nameplate.

Example of a nameplate of an induction (asynchronous) motor:

2 - Additional settings: Start, stop and reference values

2 - Additional settings: Limits		
\square	Select Limits and press \smile (Select) (or \square).	
		Limits
		Back 16:02 Select
\square	Adjust the parameters according to your needs. Select a parameter and press \backsim (Select). After making the adjustments, go back to the Primary settings menu by pressing (Back).	Localß (3 ACS580 Limits Minimum frequency: -50.00 Hz Maximum frequency: 50.00 Hz Maximum current: 3.24 A
		Back 16:03 Edit
3 - I/O menu		
\square	After the additional adjustments, make sure that the actual I/O wiring matches the I/O use in the control program. In the Main menu, select a I/O and press (Select) to enter the I/O menu.	
\square	Select a the connection you want to check and press \square (Select) (or \square).	
		Back 16:03

\square	To view the details of a parameter that cannot be adjusted via the I/O menu, press (View).		
		Actual walue:	
		Used for: Start/stop Add use: Not used	
		Back 16:04	View
\square	To adjust the value of a parameter, press Æ (Edit), adjust the value using $\triangle, ~ \boxed{\nabla}, 4$ and keys and press \backsim (Save). Note that the actual wiring must match the new value. Go back to the Main menu by pressing (Back) repeatedly.		
		DI1: Actual value: 0	
		Used for: Star/stop	
		Add use: Not used	
		Back 16:04 Edit	
		Used for:	
		Not used	
		D/1 star/stop, $\mathrm{D} / 2$ direction	
		Dil formard, D12 reverse	
		Cancel 16:04	Save
4 - Diagnostics menu			
\square	After making the additional adjustments and checking the I/O connections, use the Diagnostics menu to make sure that the setup is functioning correctly. In the Main menu, select Diagnostics and press (Select) (or \square).		
		F\% Primary settings *	
		寠 $1 / 0$	
		f 7 Diagnostics	
		-	
		Exit 16:04	Select
\square	Select the diagnostics item you want to view and press \square (Select). Return to the Diagnostics menu by pressing (Back).		
		Diagnostics	
		Star//stop/reference summary *	
			*
		Back 16:04	Select

5 - Backup		
\square	After you have finished start-up, ABB recommends that you make a backup. In the Main menu, select Backups and press \qquad (Select) (or \triangle).	
		Main menu
		$\underline{\square}$ System info
		$\stackrel{B}{B}$ A
		(8) Backups
		Exit 16:05 Select
\square	Press \nearrow (Select) to start backup.	
		Backups
		Create backup
		(A) ACS580 04.07 .2014 autobackup * \square ACS580 04.07 .2014
		Back 18:36 Select

How to control the drive through the I/O interface

The table below describes how to operate the drive through the digital and analog inputs when:

- the motor start-up is performed, and
- the default parameter settings of the ABB standard macro are in use.

Stopping the motor

Switch digital input DI1 off. The arrow stops rotating.	Femote 「) ACS580	
	Output frequency Hz	00
	$\sqrt{\text { Motor current }}$	00
	$\begin{aligned} & \text { Motor torque \% } \\ & \% \end{aligned}$	0.0
	Options 13:52	Henu

How to perform the ID run

The drive automatically estimates motor characteristics using Standstill ID run when the drive is started for the first time in vector control and after any motor parameter (group 99 Motor data) is changed. This is valid when

- parameter 99.13 ID run requested selection is Standstill and
- parameter 99.04 Motor control mode selection is Vector.

In most applications there is no need to perform a separate ID run. The ID run should be selected manually if:

- vector control mode is used (parameter 99.04 Motor control mode is set to Vector), and
- permanent magnet motor (PM) is used (parameter 99.03 Motor type is set to Permanent magnet motor), or
- synchronous reluctance motor (SynRM) is used (parameter 99.03 Motor type is set to SynRM), or
- drive operates near zero speed references, or
- operation at torque range above the motor nominal torque, over a wide speed range is needed.

Do the ID run with the ID run assistant by selecting Menu - Primary settings - Motor - ID run (see page 36) or with parameter 99.13 ID run requested (see page 38).

Note: If motor parameters (group 99 Motor data) are changed after the ID run, it must be repeated.

Note: If you have already parameterized your application using the scalar motor control mode (99.04 Motor control mode is set to Scalar) and you need to change motor control mode to Vector,

- change the control mode to vector with the Control mode assistant (go to Menu Primary settings - Motor - Control mode) and follow the instructions. The ID run assistant then guides you through the ID run.
or
- set parameter 99.04 Motor control mode to Vector, and
- for I/O controlled drive, check parameters in groups 22 Speed reference selection, 23 Speed reference ramp, 12 Standard Al, 30 Limits and 46 Monitoring/scaling settings.
- for torque controlled drive, check also parameters in group 26 Torque reference chain.

ID run procedure

With the ID run assistant

Pre-check

$\triangle \triangle$
WARNING! The motor will run at up to approximately $50 . . .80 \%$ of the nominal speed during the ID run. The motor will rotate in the forward direction. Make sure that it is safe to run the motor before performing the ID run.
Do not do ID run on a rotating motor. Make sure that the motor is stopped before starting the ID run.

De-couple the motor from the driven equipment
Check that the values of the motor data parameters are equivalent to those on the motor nameplate.

Check that the STO circuit is closed.
The assistant will ask if you want to use temporary motor limits. They must meet the following conditions:
$\square \quad$ Minimum speed $\leq 0 \mathrm{rpm}$
$\square \quad$ Maximum speed $=$ motor rated speed (Normal ID run procedure needs the motor to be run at 100% speed.)
\square Maximum current $>/ \mathrm{HD}$
Maximum torque > 50\%
Make sure that the control panel is in local control (text Local shown at the top left). Press key Loc/Rem to switch between local and remote control.

ID run			
\square	Go to the Main menu by pressing (Menu) in the Home view. Select Primary settings and press (Select) (or Δ).	Local ¢ ¢ A CS580	*0.0 Hz
		Hain menu	
		\% Primary settings	-
		㟺边 $1 / 0$	
		$\nrightarrow 0$ Diagnostics	-
		Exit 16:00]	Select
\square	Select Motor and press \smile (Select) (or \square).	Local) ¢ ACS580	$\div 0.0 \mathrm{~Hz}$
		Primary settings * Macro:	tandard
		Wotor	\bullet
		Start, stop, reference	*
		Famps	-
		Limits	-
		Back 16:00	Select

\square	Select ID run (shown only when the drive is in vector control mode) and press \square (Select) (or D).	
		Motor \times Control mode Vector $\times \times$ Nominal walues
		CiL run Done
		Thermal protection estimated $20^{\circ} \mathrm{C}$ Thermal protection measured
		Back 16:00 Select
\square	Select the type of ID run you want to do and press \square (Select) (or (Local* C ACS580 *0.0 грm
		ID run?
		Select what kind of ID run to do, if any.Press [?] for more information. Standstill ID run
		Normal ID run
		Fieduced ID run
		Back 16:03 Next
\square	Warning message Identification run is shown at the top for a few seconds. Control panel LED starts blinking green to indicate an active warning. Check the motor limits shown on the control panel. If you need other limits during the ID run you can enter them here. The originals limits will be restored after the ID run. Press \smile (Next).	Local(\% ¢ \quad ACS580
		Temporary motor limits If you need special limits during thelD run, adjust the values now. Current values are restored after the ID run.
		\cdots aximum speed
		Back 16:05 Next
\square	Press the start key (Δ) to start the ID run. In general, ABB recommends not to press any control panel keys during the ID run. However, you can stop the ID run at any time by pressing the stop key (\otimes). During the ID run a progress view is shown. After the ID run is completed, text ID run done is shown. The LED stops blinking. If the ID run fails, fault FF61 ID run is shown. See chapter Fault tracing on page 479 for more information.	Local* © ACS580 *0.0 грm
		Press Start for ID run When you press Start, the motor will rotate for about 80 seconds and accelerate up to the nominal speed. After the ID run the drive stops.
		Back 16:04
		ID run in progress This may take a few minutes. Motor speed used 1351.92 грпп Motor current 1.09 A Motor torque 0.0%
		16:104

With parameter 99.13 ID run requested

Pre-check			
WARNING! The motor will run at up to approximately $50 \ldots 80 \%$ of the nominal speed during the ID run. The motor will rotate in the forward direction. Make sure that it is safe to run the motor before performing the ID run. Do not do ID run on a rotating motor. Make sure that the motor is stopped before starting the ID run.			
\square	De-couple the motor from the driven equipment Check that the values of the motor data paramet nameplate. Check that the STO circuit is closed. If parameter values (from group 10 Standard DI, before the ID run, check that the new settings me 30.11 Minimum speed ≤ 0 rpm 30.12 Maximum speed $=$ motor rated speed (Norm be run at 100% speed.) 30.17 Maximum current $>I_{\mathrm{HD}}$ 30.20 Maximum torque $1>50 \%$ or 30.24 Maximu torque limit set is in use according to parameter Check that signals run enable (parameter 20.12 Run enable 1 source) start enable (parameter 20.19 Enable start comm enable to rotate (parameter 20.22 Enable to rotate) Make sure that the control panel is in local control key Loc/Rem to switch between local and remote	s are equivalent to those to group 99 Motor data) the following conditions al ID run procedure needs torque $2>50 \%$, depend .18 Torq lim sel.) is active nd) is active) is active. text Local shown at the to ntrol.	e motor hanged motor to n which Press
ID run			
\square	Go to the Main menu by pressing (Menu) in the Home view. Press \square .		

\square	Select Parameters and press \nearrow (Select) (or ($)$.	Local) ¢ ${ }^{\text {ACS580 }}$	*0.0 грпо	
		Hain menu	-1\|	
			$\stackrel{\rightharpoonup}{*}$	
		Exit 16:00	Select	
\square	```Select Complete list and press ¿ (or \(\triangle\)).```	Local/ ¢ C ACS580	*0.0 грпо	
		Parameters		
		Complete list	-	
		Favorites Modified	-	
		Back 16:010	Select	
\square	Scroll the page with Δ] and \square, and select parameter group 99 Motor data and press (Select) (or \square).	Local) C ACS580	*0.0 rpmorn	
		Complete list	$\overline{\square .1}$	
		95 HW configuration 96 System	*	
		97 Motor control	*	
		98 User motor parameters	*	
		98 Motor data	$\stackrel{\rightharpoonup}{*}$	
		Back 16:00]	Select	
\square	Scroll the page with \triangle] and $\boxed{\nabla}$, and select parameter 99.13 ID run requested (99.13 ID run requested) and press \square (Select) (or \triangle).	Local) C ACS580	*0.0 гpm	
		99 Motor data		
		99.09 Motor nominal speed 99.10 Motor nominal power 99.11 Motor nominal cos 中 99.12 Motor nominal torque	$\begin{array}{r} 1360 \mathrm{rpm} \\ 0.18 \mathrm{~kW} \\ 0.00 \\ 0.000 \mathrm{Nm} \end{array}$	
		99.13 ID run requested	None\|	
		Back 16:01	Edit	
\square	Select the ID run type and press \square (Save) (or D)	Local) ल $\mathrm{ACS580}$	*0.0 грпт	
		99.13 ID run requested [0] None [1] Normal [2] Reduced [3] Standstill [6] Advanced	\\|	
		Cancel 16:01	Save	

Control panel

Contents of this chapter

This chapter contains instructions for removing and reinstalling the assistant control panel and briefly describes its display, keys and key shortcuts. For more information, see ACx-AP-x assistant control panels user's manual (3AUA0000085685 [English]).

Removing and reinstalling the control panel

To remove the control panel, press the retaining clip at the top (1a) and pull it forward from the top edge (1b).

To reinstall the control panel, put the bottom of the container in position (1a), press the retaining clip at the top (1b) and push the control panel in at the top edge (1c).

Layout of the control panel

1	Layout of the control panel display
2	Left softkey
3	Right softkey
4	Status LED, see chapter Maintenance and hardware diagnostics, section LEDs in the Hardware manual of the drive.
5	Help

6	The arrow keys
7	Stop (see Start and Stop)
8	Start (see Start and Stop)
9	Local/Remote (see Loc/Rem)
10	USB connector

\qquad

Layout of the control panel display

In most views, the following elements are shown on the display:

1. Control location and related icons: Indicates how the drive is controlled:

- No text: The drive is in local control, but controlled from another device. The icons in the top pane indicate which actions are allowed:

Text/lcons	Starting from this control panel	Stopping from this control panel	Giving reference from this panel
	Not allowed	Not allowed	Not allowed

- Local: The drive is in local control, and controlled from this control panel. The icons in the top pane indicate which actions are allowed:

Text/Icons	Starting from this control panel	Stopping from this control panel	Giving reference from this panel	
Local ϕ	\star	Allowed	Allowed	Allowed

- Remote: The drive is in remote control, that is, controlled through I/O or fieldbus. The icons in the top pane indicate which actions are allowed with the control panel:

Text/Icons		Starting from this control panel	Stopping from this control panel	Giving reference from this panel
Remote		Not allowed	Not allowed	Not allowed
Remote ©		Allowed	Allowed	Not allowed
Remote	*	Not allowed	Allowed	Allowed
Remote $\%$	$\stackrel{*}{*}$	Allowed	Allowed	Allowed

2. Panel bus: Indicates that there are more than one drive connected to this panel. To switch to another drive, go to Options - Select drive.
3. Status icon: Indicates the status of the drive and the motor. The direction of the arrow indicates forward (clockwise) or reverse (counter-clockwise) rotation.

Status icon	Animation	Drive status
$\stackrel{1}{ }$	-	Stopped
\mathbb{R}	-	Stopped, start inhibited
$r^{\sim} \rightarrow \mathbb{R}$	Blinking	Stopped, start command given but start inhibited. See Menu - Diagnostics on the control panel
$\stackrel{\leftrightarrow}{\leftrightarrow} \leftrightarrow$	Blinking	Faulted
$\stackrel{\rightharpoonup}{4}$	Blinking	Running, at reference, but the reference value is 0
${ }^{1} \leftrightarrow$	Rotating	Running, not at reference
$(\leftrightarrow) 2$	Rotating	Running, at reference
¢ \iint	-	Pre-heating (motor heating) active
\underline{z}	-	PID sleep mode active

4. Drive name: If a name has been given, it is displayed in the top pane. By default, it is "ACS580". You can change the name on the control panel by selecting Menu - Primary settings - Clock, region, display (see page 66).
5. Reference value: Speed, frequency, etc. is shown with its unit. For information on changing the reference value in the Primary settings menu (see page 50) or in the Options menu (see page 75).
6. Content area: The actual content of the view is displayed in this area. The content varies from view to view. The example view on page 43 is the main view of the control panel which is called the Home view.
7. Softkey selections: Displays the functions of the softkeys (\triangle and \backsim) in a given context.
8. Clock: The clock displays the current time. You can change the time and time format on the control panel by selecting Menu - Primary settings - Clock, region, display (see page 66).

You can adjust the display contrast and back light functionality on the control panel by selecting Menu - Primary settings - Clock, region, display (see page 66).

Home view displays

There are four different preconfigured basic configurable Home view displays for assistant panel. Home view 1 is the default Home view. You can browse them with the arrow keys (\triangle and Δ). At first the bottom row shows the number of the Home view display, and after a while this is replaced by the time.

Home view 1 (default Home view): - Output frequency (Hz): Parameter 01.06 Output frequency - Motor current (A): Parameter 01.07 Motor current - Al1 actual value (V or mA): Parameter 12.11 Al1 actual value		$\uparrow 0.0 \mathrm{~Hz}$
	Output frequency ${ }^{\mathrm{Hz}} \mathrm{l}$	0.00
	Motor current A	0.00
		0.0
	Options 16:00	Henu
Home view 2: - Motor current (A): Parameter 01.07 Motor current - Output power (kW): Parameter 01.14 Output power	Local) ${ }^{\text {¢ ACS580 }}$	
	Motor torque 0.0\%	
	-300.0	
	Output power	
	-5.00	5.00
	Options 2/4	Henu
Home view 3: - Output frequency shown as a graphical representation during the last 60 minutes: Parameter 01.06 Output frequency	Local) C ACS580	*0.0 Hz
	Output frequency 0.00 Hz	
	50.00	
	$0: 00 .$	
	-50.00 30 min	
	Options 3/4	Henu
Home view 4: - Motor current shown as a graphical representation during the last 60 minutes: Parameter 01.07 Motor current	Local $\%$ ¢ ACS580 $\quad * 0.0 \mathrm{~Hz}$	
	$\underbrace{0.00}_{\text {Motor current }}$	
	Options 4/4	Henu

You can replace parameters in the Home view displays with other parameters or create new Home view displays showing selected parameters.

- Go to the Home view you want to edit and press the Options softkey (\triangle) and select Edit Home view (see page 75), or
- Go to the Main menu and select Parameters. Open the parameter and press the Add to view softkey and select a Home view display, or create a new one.

Keys

The keys of the control panel are described below.

Left softkey

The left softkey (\triangle) is usually used for exiting and canceling. Its function in a given situation is shown by the softkey selection in the bottom left corner of the display.

Holding \triangle down exits each view in turn until you are back in the Home view. This function does not work in special screens.

Right softkey

The right softkey (\smile) is usually used for selecting, accepting and confirming. The function of the right softkey in a given situation is shown by the softkey selection in the bottom right corner of the display.

The arrow keys

The up and down arrow keys (\triangle and $\boxed{\nabla}$) are used to highlight selections in menus and selection lists, to scroll up and down on text pages, and to adjust values when, for example, setting the time, entering a passcode or changing a parameter value.

The left and right arrow keys (\triangle) and \square) are used to move the cursor left and right in parameter editing and to move forward and backward in assistants. In menus, \triangle and \square function the same way as \square and \boxtimes, respectively.

Help

The help key (?) opens a help page. The help page is context-sensitive, in other words, the content of the page is relevant to the menu or view in question.

Start and Stop

In local control, the start key (\wedge) and the stop key (\otimes) starts and stops the drive, respectively.

Loc/Rem

The location key (Loc/Rem) is used for switching the control between the control panel (Local) and remote connections (Remote). When switching from Remote to Local while the drive is running, the drive keeps running at the same speed. When switching from Local to Remote, the status of the remote location is adopted.

Key shortcuts

The table below lists key shortcuts and combinations. Simultaneous key presses are indicated by the plus sign (+).

Shortcut	Available in	Effect
$\begin{aligned} & \square+\boxtimes \\ & +\Delta \end{aligned}$	any view	Save a screenshot. Up to fifteen images may be stored in the control panel memory. To transfer images to PC, connect the assistant control panel to PC with a USB cable and the panel will mount itself as an MTP (media transfer protocol) device. Pictures are stored in the screen shots folder. For more instructions, see $A C x-A P-x$ assistant control panels user's manual (3AUA0000085685 [English]).
$\begin{aligned} & \square+\Delta, \\ & \square+\square \end{aligned}$	any view	Adjust backlight brightness.
$\begin{aligned} & \approx+\square \\ & \approx+\square \end{aligned}$	any view	Adjust display contrast.
\triangle or -7	Home view	Adjust reference.
($]+\square$	parameter edit views	Revert an editable parameter to its default value.
(4) +	view showing a list of selections for a parameter	Show/hide selection index numbers.
(keep down)	any view	Return to the Home view by pressing down the key until the Home view is shown.

Settings, I/O and diagnostics on the control panel

Contents of this chapter

This chapter provides detailed information about the Primary settings, I/O, Diagnostics, Systems info, Energy efficiency and Backups menus on the control panel.

To get to the Primary settings, I/O, Diagnostics, Systems info, Energy efficiency or Backups menu from the Home view (see section Home view displays on page 45), first select Menu to go the Main menu, and in the Main menu, select the menu you want.

Local ${ }^{\text {¢ }}$	(AC5580	*0.0 Hz
Hain menu		
\% 6	Primary settings	
를		
A	nostics	*
Exit	16:00	Select

To read about the Options menu opening from the Options softkey (\triangle), see page 75.

Primary settings menu

Local)	ACS580	*0.0 Hz
Primary settings		
\% Wacr		andard
Motor		
Stant, stop, reference		
Fiamps		
Limits		
Back	16:00]	Select

To go the Primary settings menu from the Home view, select Menu - Primary settings.

The Primary settings menu enables you to adjust and define additional settings used in the drive.

After making the guided settings using the first start assistant, ABB recommends that you make at least these additional settings:

- Select a Macro or set Start, stop, reference values
- Ramps
- Limits

With the Primary settings menu, you can also adjust settings related to the motor, PID, fieldbus, advanced functions and clock, region and display. In addition, you can reset the fault and event logs, control panel Home view, parameters not related to hardware, fieldbus settings, motor data and ID run results, all parameters, end user texts as well as reset everything to factory defaults.

Note that the Primary settings menu only enables you to modify some of the settings: more advanced configuration is done via the parameters: Select Menu Parameters. For more information on the different parameters, see chapter Parameters on page 195.

In the Setting menu, the Λ symbol indicates multiple connected signals/parameters. The $\underset{\mu}{4}$ symbol indicates that the setting provides an assistant when modifying the parameters.

To get more information on Primary settings menu items, press the ? key to open the help page.

The figure below shows how to navigate in the Primary settings menu.

The sections below provide detailed information about the contents of the different submenus available in the Primary settings menu.

Macro

Local ${ }^{\text {人 }}$	ACS580	*0.0 Hz
Control macro		
Press [?] for wiring descriptions WARNING: Resets all settings.		
ABE standard		
FID		
Back	16:01	Select

Use the Macro submenu to quickly set up drive control and reference source by selecting from a set of predefined wiring configurations.

Note: For detailed information about the available macros, see Control macros (page 77).

If you do not wish to use a macro, manually define the settings for Start, stop, reference. Note that even if you select to use a macro, you can also modify the other settings to suit your needs.

Motor

Local\%	(ACS580	*0.0 Hz	Local)	A.C5580	* 0.0 гроп
Hotor			Hotor		
${ }_{3} \times$ Cont		Scalar	> Control mode		
$\underset{\sim}{*}$ Nominal values			$\underset{\sim}{*}$ Nominal values		
Thermal protection estimated $20^{\circ} \mathrm{C}$			米\| C run Done		
Thermal protection measured			Thermal protection estimated $20^{\circ} \mathrm{C} \cdot$ Thermal protection measured		
Start m		Normal			
Back	16:001	Select	Back	16:00]	Select

Use the Motor submenu to adjust motor-related settings, such as nominal values, control mode or thermal protection.

Note that settings that are visible depend on other selections, for example vector or scalar control mode, used motor type or selected start mode.

Three assistants are available: Control mode, Nominal value and ID run (for vector control mode only).

The table below provides detailed information about the available setting items in the Motor menu.

Menu item	Description	Corresponding parameter
Control mode	Selects whether to use scalar or vector control mode. For information on scalar control mode, see Scalar motor control on page 156. For information on vector control mode, see Vector motor control on page 157.	99.04 Motor control mode
Nominal values	Enter the motor's nominal values from the motor's nameplate.	$\begin{aligned} & \text { 99.06 Motor nominal } \\ & \text { current ... } \\ & \text { 99. } 12 \text { Motor nominal } \\ & \text { torque } \\ & \hline \end{aligned}$
Thermal protection estimated	The settings in this submenu are meant to protect the motor from overheating by automatically triggering a fault or warning above a certain temperature. By default, motor thermal estimate protection is on. ABB recommends checking the values for the protection to function properly. For more information, see Motor thermal protection on page 177.	35 Motor thermal protection
Thermal protection measured	The settings in this submenu are meant to protect the motor with a thermal measurement from overheating by automatically triggering a fault or warning above a certain temperature. For more information, see Motor thermal protection on page 177.	35 Motor thermal protection
Start mode:	Sets how the drive starts the motor (for example pre-magnetize or not).	21 Start/stop mode
Flux braking:	Sets how much current to use for braking, that is, how the motor is magnetized before starting. For more information, see Flux braking on page 160.	97.05 Flux braking
U/f ratio:	The form of voltage to frequency ratio below field weakening point.	97.20 U/F ratio
IR compensation:	Sets how much to boost voltage at zero speed. Increase this for higher break-away torque. For more information, see IR compensation for scalar motor control on page 157.	97.13 IR compensation
Pre-heating	Turns pre-heating on or off. The drive can prevent condensation in a stopped motor by feeding it a fixed current (\% of motor nominal current). Use in humid or cold conditions to prevent condensation.	21.14 Pre-heating input source 21.16 Pre-heating current
Phase order:	If the motor turns in the wrong direction, change this setting to fix the direction instead of changing the phase order on the motor cable.	99.16 Motor phase order

Start, stop, reference

| Local | C ACS580 |
| :---: | :---: |$\geqslant 0.0 \mathrm{~Hz}$

Start, stop, reference

Use the Start, stop, reference submenu to set up start/stop commands, reference, and related features, such as constant speeds or run permissions.

The table below provides detailed information about the available setting items in the Start, stop, reference menu.

Menu item	Description	Corresponding parameter
Reference from	Sets where the drive gets its reference when remote control (EXT1) is active.	28.11 Ext1 frequency ref1 or 22.11 Ext1 speed ref1 12.19 Al1 scaled at Al1 min
Reference-related settings (e.g. Al scaling, Al2 scaling, Motor potentiometer settings) depending on the selected reference	The voltage or current fed to the input is converted into a value the drive can use (for example reference).	12.20 Al1 scaled at Al1 \max
Start/stop/dir from:	Sets where the drive gets start, stop, and (optionally) direction commands when remote control (EXT1) is active.	20.01 Ext1 commands
Secondary control location	Settings for the secondary remote control location, EXT2. These settings include reference source, start, stop, direction and command sources for EXT2. By default, EXT2 is set to Off.	19.11 Ext1/Ext2 selection 28.15 Ext2 frequency ref1 or 22.18 Ext2 speed ref1 12.17 Al1 min 12.18 Al1 max 12.27 Al2 min 12.28 AI2 max 20.06 Ext2 commands 20.08 Ext2 in1 source 20.09 Ext2 in2 source 20.10 Ext2 in3 source

Menu item	Description	Corresponding parameter
Constant speeds / Constant frequencies	These settings are for using a constant value as the reference. By default, this is set to On. For more information, see Constant speeds/frequencies on page 124.	28.21 Constant frequency function or 22.21 Constant speed function 28.26 Constant frequency 1 28.27 Constant frequency 2 28.28 Constant frequency 3 22.26 Constant speed 1 22.27 Constant speed 2 22.28 Constant speed 3
Jogging	These settings allow you to use a digital input to briefly run the motor using predefined speed and acceleration/deceleration ramps. By default, jogging is disabled and it can only be used in the Vector control mode. For more information, see Jogging on page 165.	20.25 Jogging enable 22.42 Jogging 1 ref 22.43 Jogging 2 ref 23.20 Acc time jogging 23.21 Dec time jogging
Run permissions	Settings to prevent the drive from running or starting when a specific digital input is low.	20.12 Run enable 1 source 20.11 Run enable stop mode 20.19 Enable start command 20.22 Enable to rotate 21.05 Emergency stop source 21.04 Emergency stop mode 23.23 Emergency stop time

Ramps

Use the Ramps submenu to set up acceleration and deceleration settings.
Note: To set ramps, you also have to specify parameter 46.01 Speed scaling (in speed control mode) or 46.02 Frequency scaling (in frequency control mode).

The table below provides detailed information about the available setting items in the Ramps menu.

Menu item	Description	Corresponding parameter
Acceleration time:	This is the time between standstill and "scaling speed" when using the default ramps (set 1).	23.12 Acceleration time 1 28.72 Freq acceleration time 1
Deceleration time:	This is the time between standstill and "scaling speed" when using the default ramps (set 1).	23.13 Deceleration time 1 28.73 Freq deceleration time 1
Frequency scaling for ramps:	This is the maximum speed/frequency value for acceleration ramp rate and the initial value for deceleration ramp rate. Applies to both ramp sets.	46.02 Frequency scaling
Shape time:	Sets the shape of the default ramps (set 1).	23.32 Shape time 1 28.82 Shape time 1
Stop mode:	Sets how the drive stops the motor.	21.03 Stop mode
Use two ramp sets	Sets the use of a second acceleration/deceleration ramp set. If unselected, only one ramp set is used. Note that if this selection is not enabled, the selections below are not available.	
Activate ramp set 2:	To switch ramp sets, you can either: - use a digital input (low = set 1 ; high = set 2), or - automatically switch to set 2 above a certain frequency/speed.	23.11 Ramp set selection 28.71 Freq ramp set selection
Acceleration time 2:	Sets the time between standstill and "scaling speed" when using ramp set 2.	23.14 Acceleration time 2 28.74 Freq acceleration time 2
Deceleration time 2:	Sets the time between standstill and "scaling speed" when using ramp set 2.	23.15 Deceleration time 2 28.75 Freq deceleration time 2

Menu item	Description	Corresponding parameter
Shape time 2:	Sets the shape of ramps in set 2.	23.33 Shape time 2 28.83 Shape time 2

Limits

Local \% C ACS580	*0.0 Hz
Limits	
Winimum frequency:	$-50.000 \mathrm{~Hz}$
Maximumf frequency:	50.00 Hz
Maximumin current:	3.24 A
Back 16:03	Edit

Use the Limits submenu to set the allowed operating range. This function is intended to protect the motor, connected hardware and mechanics. The drive stays within these limits, no matter what reference value it gets.

Note: To set ramps, you also have to specify parameter 46.01 Speed scaling (in speed control mode) or 46.02 Frequency scaling (in frequency control mode); these limit parameters have no effect on ramps.

The table below provides detailed information about the available setting items in the Limits menu.

Menu item	Description	Corresponding parameter
Minimum frequency	Sets the minimum operating frequency. Affects scalar control only.	30.13 Minimum frequency
Maximum frequency	Sets the maximum operating frequency. Affects scalar control only.	30.14 Maximum frequency
Minimum speed	Sets the minimum operating speed. Affects vector control only.	30.11 Minimum speed
Maximum speed	Sess the maximum operating speed. Affects vector control only.	30.12 Maximum speed
Minimum torque	Sets the minimum operating torque. Affects vector control only.	30.19 Minimum torque 1
Maximum torque	Sets the maximum operating torque. Affects vector control only.	30.20 Maximum torque 1
Maximum current	Sets the maximum output current.	30.17 Maximum current

PID

Local\% C ACS580	* 0.0 Hz
PID	
PID is controlling:	Not selected
FID output:	0.00 *
Unit:	${ }^{\circ} \mathrm{C}$
Deviation:	$0.00{ }^{\circ} \mathrm{C}$
Setpoint:	$0.00{ }^{\circ} \mathrm{CN}$
Back 16:02	Edit

The PID submenu contains settings and actual values for the process PID controller for controlling multiple pumps or fans through the drive's relay outputs.

The table below provides detailed information about the available setting items in the PID menu.

Menu item	Description	Corresponding parameter
PID is controlling:	Sets what to use PID output for: - Not selected: PID not used. - Frequency reference (or Speed reference, depending on the motor control mode): Uses PID output as a frequency (speed) reference when remote control (EXT1) is active.	40.07 Process PID operation mode
PID output:	View the process PID output or set its range.	40.01 Process PID output actual 40.36 Set 1 output min 40.37 Set 1 output max
Unit:	PID customer unit. Sets the text shown as the unit for setpoint, feedback and deviation.	
Deviation:	View or invert process PID deviation.	40.04 Process PID deviation actual 40.31 Set 1 deviation inversion
Setpoint:	View or configure the process PID setpoint, that is, the target process value. You can also use a constant setpoint value instead of (or in addition to) an external setpoint source. When a constant setpoint is active, it overrides the normal setpoint.	40.03 Process PID setpoint actual 40.16 Set 1 setpoint 1 source
Feedback:	View or configure process PID feedback, that is, the measured value.	40.02 Process PID feedback actual 40.08 Set 1 feedback 1 source 40.11 Set 1 feedback filter time

Menu item	Description	Corresponding parameter
Tuning	The Tuning submenu contains settings for gain, integration time and derivation time. 1. Make sure it is safe to start the motor and run the actual process. 2. Start the motor in remote control. 3. Change setpoint by a small amount. 4. Watch how feedback reacts. 5. Adjust gain/integration/derivation. 6. Repeat steps 3-5 until feedback reacts as desired.	40.32 Set 1 gain 40.33 Set 1 integration time 40.34 Set 1 derivation time 40.35 Set 1 derivation filter time
Sleep function	The sleep function can be used to save energy by stopping the motor during low demand. By default, sleep function is disabled. If enabled, the motor automatically stops when demand is low, and starts again when deviation grows too large. This saves energy when rotating the motor at low speeds would be useless. See section Sleep and boost functions for process PID control on page 132.	40.43 Set 1 sleep level 40.44 Set 1 sleep delay 40.45 Set 1 sleep boost time 40.46 Set 1 sleep boost step 40.47 Set 1 wake-up deviation 40.48 Set 1 wake-up delay

Pump and fan control

Local\%	C ACS580	$\uparrow 0.0 \mathrm{~Hz}$
Pump and fan control		
PFC mo		PFE
Configure PFC I/0		
Configure PFE control		
Configure Autochange Not selected*		
Back	16:02	Edit

The Pump and fan control submenu contains settings for the Pump and fan control logic. The Pump and fan control is supported in external control location EXT2 only.

The table below provides detailed information about the available setting items in the Pump and fan control menu.

Menu item	Description	Corresponding parameter
PFC mode:	See section Pump and fan control (PFC) on page 142. Selects the PFC or SPFC control.	76.21 Multipump configuration
Configure PFC I/O	Configures PFC/SPFC I/O. - Number of motors - ROs - Interlocks - Check I/O configuration (See I/O menu on page 69.)	76.25 Number of motors 76.27 Max number of motors allowed 76.59 PFC contactor delay 10.24 RO1 source 10.27 RO2 source 10.30 RO3 source 76.81 PFC 1 interlock 76.82 PFC 2 interlock 76.83 PFC 3 interlock 76.84 PFC 4 interlock 76.85 PFC 5 interlock 76.86 PFC 6 interlock
Configure PFC control	Configures PFC/SPFC control	76.30 Start point 1 76.31 Start point 2 76.32 Start point 3 76.33 Start point 4 76.34 Start point 5 76.41 Stop point 1 76.42 Stop point 2 76.43 Stop point 3 76.44 Stop point 4 76.45 Stop point 5 76.55 Start delay 76.56 Stop delay
Configure Autochange	Configures Autochange	76.70 PFC autochange 76.71 PFC autochange interval 76.72 Maximum wear imbalance 76.73 Autochange level

Fieldbus

Local今 C ACS580 $\quad 0.0 \mathrm{~Hz}$			Local* \quad ¢ ACS580 $\quad * 0.0 \mathrm{~Hz}$			
			Fieldbus			
Fieldbus selection:		Not selected	Fieldbus selection: Embedded Modlous RTU			
		Commu	setup	*		
		Drive c	tup	*		
		Received	fommas	,		
Back	16:02		Edit	Back	16:02	Edit

Use the settings in the Fieldbus submenu to use the drive with a fieldbus:

- CANopen
- ControlNet
- DeviceNet ${ }^{\text {TM }}$
- Ethernet POWERLINK
- EtherCAT
- Ethernet/IP ${ }^{T M}$
- RS-485
- Modbus (RTU or TCP)
- PROFIBUS DP
- PROFINETIO

You can also configure all the fieldbus related settings via the parameters (parameter groups 50 Fieldbus adapter (FBA), 51 FBA A settings, 52 FBA A data in, 53 FBA A data out, 58 Embedded fieldbus), but the purpose of the Fieldbus menu is to make the protocol configurations easier.

Note that only Modbus RTU is embedded and the other fieldbus modules are optional adapters. For the optional modules, the following adapters are required to the needed protocols:

- CANopen: FCAN-01
- ControlNet: FCNA-01
- DeviceNet ${ }^{\text {TM }}$: FDNA-01
- Ethernet POWERLINK: FEPL-02
- EtherCAT: FECA-01
- Ethernet/IP ${ }^{\text {TM }}$: FENA-21
- Modbus/TCP: FMBT-21, FENA-21
- RS-485: FSCA-01
- PROFIBUS DP: FPBA-01
- PROFINET IO: FENA-21

The table below provides detailed information about the available setting items in the Fieldbus menu. Note that some of the items only become active once you have enabled fieldbus.

Menu item	Description	Corresponding parameter
Fieldbus selection	Select this if you want to use the drive with a fieldbus.	51.01 FBA A type 58.01 Protocol enable
Communication setup	To set up communication between the drive and the fieldbus master, define these settings and then select Apply settings to fieldbus module.	51 FBA A settings 51.01 FBA A type 51.02 FBA A Par2 51.27 FBA A par refresh 51.31 D2FBA A comm status 50.13 FBA A control word 50.16 FBA A status word 58 Embedded fieldbus 58.01 Protocol enable 58.03 Node address 58.04 Baud rate 58.05 Parity 58.25 Control profile
Drive control setup	Sets how a fieldbus master can control this drive, and how the drive reacts if the fieldbus communication fails.	20.01 Ext1 commands 19.11 Ext1/Ext2 selection 22.11 Ext1 speed ref1 28.11 Ext1 frequency ref1 22.41 Speed ref safe 28.41 Frequency ref safe 50.03 FBA A comm loss t out 46.01 Speed scaling 46.02 Frequency scaling 23.12 Acceleration time 1 23.13 Deceleration time 1 28.72 Freq acceleration time 1 28.73 Freq deceleration time 1 51.27 FBA A par refresh 58.14 Communication loss action 58.15 Communication loss mode 58.16 Communication loss time
Received data from master	Sets what the drive's fieldbus module expects to receive from the fieldbus master (PLC). After changing these settings, select Apply settings to fieldbus module.	50.13 FBA A control word 53 FBA A data out 51.27 FBA A par refresh 58.18 EFB control word 03.09 EFB reference 1

Menu item	Description	Corresponding parameter
Send data to master	Sets what the drive's fieldbus module sends to the fieldbus master (PLC). After changing these	50.16 FBA A status word 52 FBA A data in settings, select Apply settings to fieldbus module.
51.27 FBA A par refresh 58.19 EFB status word		
Apply settings to fieldbus module	Applies modified settings to the fieldbus module.	51.27 FBA A par refresh 58.06 Communication control

Advanced functions

Local)	ACS580	* 0.00 Hz
Advanced functions		
External events		
\square Additional fault reset		
कemonkemam		Weme
Autoreset faults		Of:
Supervision		
Back	16:02	Select

The Advanced functions submenu contains settings for advanced functions, such as triggering or resetting faults via I/O, signal supervision, using the drive with timed functions, or switching between several entire sets of settings.

The table below provides detailed information about the available setting items in the Advanced functions menu.

Menu item	Description	Corresponding parameter
External events	Enables you to define custom faults or warnings you can trigger via digital input. The texts of these messages are customizable.	31.01 External event 1 source 31.02 type External event 1 31.03 External event 2 source 31.04 External event 2 type 31.05 External event 3 source 31.06 External event 3 type
Additional fault reset	You can reset an active fault via I/O: a rising pulse in the selected input means reset. A fault can be reset from the fieldbus even if Reset faults manually is unselected.	selection reset
Reset from keypad and...	Define from where you want to reset faults manually. Note that this submenu is active only if you have selected to reset faults manually.	31.11 Fault reset selection

Menu item	Description	Corresponding parameter
Autoreset faults	Reset faults automatically. For more information, see Automatic fault resets on page 185.	31.12 Autoreset selection 31.14 Number of trials 31.15 Total trials time 31.16 Delay time
Supervision	You can select three signals to be supervised. If a signal is outside predefined limits a fault or warning is generated. For complete settings, see group 32 Supervision on page 319.	32.01 Supervision status 32.05 Supervision 1 function 32.06 Supervision 1 action 32.07 Supervision 1 signal 32.09 Supervision 1 low 32.10 Supervision 1 high 32.11 Supervision 1 hysteresis .. 32.25 Supervision 3 function 32.26 Supervision 3 action 32.27 Supervision 3 signal 32.29 Supervision 3 low 32.30 Supervision 3 high 32.31 Supervision 3 hysteresis 31
Stall protection	The drive can detect a motor stall and automatically fault or show a warning message. Stall condition is detected when: - current is high (above certain \% of motor nominal current), and - output frequency (scalar control) or motor speed (vector control) is below a certain limit, and - the conditions above have been true for a certain minimum duration.	31.24 Stall function 31.25 Stall current limit 31.26 Stall speed limit 31.27 Stall frequency limit 31.28 Stall time

Menu item	Description	Corresponding parameter
Timed functions	Enables using the drive with timed functions. For complete settings, see group 34 Timed functions on page 327.	34.100 Timed function 1 34.101 Timed function 2 34.102 Timed function 3 34.11 Timer 1 configuration 34.12 Timer 1 start time 34.13 Timer 1 duration ... 34.44 Timer 12 configuration 34.45 Timer 12 start time 34.46 Timer 12 duration 34.111 Boost time activation source 34.112 Boost time duration
User sets	This submenu enables you to save multiple sets of settings for easy switching. For more information about user sets, see User parameter sets on page 190.	96.11 User set save/load 96.10 User set status 96.12 User set I/O mode in1 96.13 User set I/O mode in2

Clock, region, display

Local ${ }^{\text {\% }}$	ACS580	*0.0 Hz
Clock, region, display		
Language		
Date 8 time		
Units		
Drive пame		ACS580
Contact info in fault view		Off
Back	16:02	Select

The Clock, region, display submenu contains settings for language, date and time, display (such as brightness) and settings for changing how information is displayed on screen.

The table below provides detailed information about the available setting items in the Clock, region, display menu.

Menu item	Description	Corresponding parameter
Language	Change the language used on the control panel screen. Note that the language is loaded from the drive so this takes some time.	96.01 Language
Date \& time	Set the time and date, and their formats.	
Units	Select the units used for power, temperature and torque.	
Drive name:	The drive name defined in this setting is shown in the status bar at the top of the screen while using the drive. If more than one drives are connected to the control panel, the drive names make it easy to identify each drive. It also identifies any backups you create for this drive.	
Contact info in fault view	Define a fixed text that is shown during any fault (for example, who to contact in case of a fault). If a fault occurs, this information appears on the control panel screen (in addition to the fault- specific information).	
Display settings	Adjust the brightness, contrast and display power save delay of the control panel screen or to invert white and black.	
Show in lists	Show or hide the numeric IDs of: - parameters and groups - option list items bits - devices in Options > Select drive	Enables or disables pop-up views showing information on inhibits, for example when you try to start the drive but it is prevented.
Show inhibit pop-up		

Reset to defaults

Local)	S580	* 0.0 Hz
Reset to defaults		
UReset fault and event logs		
\longrightarrow Reset home viem layout - Reset non-HW' parameters GReset all fieldbus settings - Pieset motor data and ID run resu...		
Back	16:02	Select

The Reset to defaults submenu enables you to reset parameters and other settings.

Menu item	Description	Corresponding parameter
Reset fault and event logs	Clears all events from the drive's fault and event logs.	96.51 Clear fault and event logger
Reset home view layout	Restores the Home view layout back to show the values of the default parameters defined by the control macro in use.	96.06 Parameter restore, selection Reset home view
Reset non-HW parameters	Restores all editable parameter values to default values, except - motor data and ID run results - I/O extension module settings - end user texts, such as customized warnings and faults, and the drive name - control panel/PC communication settings - fieldbus adapter settings - control macro selection and the parameter defaults - parameter 95.01 Supply voltage - differentiated defaults implemented by parameters 95.20 HW options word 1 and 95.21 HW options word 2 - user lock configuration parameters 96.100...96.102.	96.06 Parameter restore, selection Restore defaults
Reset all fieldbus settings	Restores all fieldbus and communication related settings to default values. Note: Fieldbus, control panel and PC tool communication are interrupted during the restore.	96.06 Parameter restore, selection Reset all fieldbus settings
Reset motor data and IR run results	Restores all motor nominal values and motor ID run results to default values.	96.06 Parameter restore, selection Reset motor data

Menu item	Description	Corresponding parameter
Reset all parameters	Restores all editable parameter values to default values, except - end user texts, such as customized warnings and faults, and the drive name - control panel/PC communication - settings control macro selection and the parameter defaults	96.06 Parameter restore, selection Clear all
	parameter 95.01 Supply voltage - differentiated defaults implemented by parameters 95.20 HW options word 1 and 95.21 HW options word 2	user lock configuration parameters $96.100 . .96 .102$ group 49 Panel port communication parameters.
Reset end user texts	Restores all end user texts to default values, including the drive name, contact info, customized fault and warning texts, PID unit and currency unit.	96.06 Parameter restore, selection Reset end user texts
Reset all to factory defaults	Restores settings and all editable parameters back to initial factory values, except - differentiated defaults implemented by parameters 95.20 HW options word 1 and 95.21 HW options word 2.	96.06 Parameter restore, selection All to factory defaults

I/O menu

Local ${ }^{\text {¢ }}$	$\cdots \mathrm{ACS580} 0$
1/0	
D11: 0	Stan/stop •
디2: 1	Direction ${ }^{\text {a }}$
디3: 0	Used in several places*
[144:0	Used in several places*
미5: 0	Switch to ramp set 2*
Back	16:03 Select

To go the I/O menu from the Home view, select Menu - I/O.
Use the I/O menu to make sure that the actual I/O wiring matches the I/O use in the control program. It answers the questions:

- What is each input being used for?
- What is the meaning of each output?

In the I/O menu, each row provides the following information:

- Terminal name and number
- Electrical status
- Logical meaning of the drive

Each row also provides a submenu that provides further information on the menu item and lets you make changes to the I/O connections.

The table below provides detailed information about the contents of the different submenus available in the I/O menu.

Menu item	Description
DI1	This submenu lists the functions that use DI1 as input.
DI2	This submenu lists the functions that use DI2 as input.
DI3	This submenu lists the functions that use DI3 as input.
DI4	This submenu lists the functions that use DI4 as input.
DI5	This submenu lists the functions that use DI5 or FI as input. The connector can be used as either digital input or frequency input.
DI6	This submenu lists the functions that use DI6 as input. The connector can be used as either digital input or thermistor input.
Al1	This submenu lists the functions that use AI1 as input.
Al2	This submenu lists the functions that use AI2 as input.
RO1	This submenu lists what information goes into relay output 1.
RO2	This submenu lists what information goes into relay output 2.
RO3	This submenu lists what information goes into relay output 3.
AO1	This submenu lists what information goes into AO1.
AO2	This submenu lists what information goes into AO2.

Diagnostics menu

Local)	ACS590	*0.0 Hz
Diagnostics		
Start/stop/reference summary		
Limit status		
सेकीए		
¢ A ¢		
केष		
Back	16:04	Select

To go the Diagnostics menu from the Home view, select Menu - Diagnostics.
The Diagnostics menu provides you with diagnostic information, such as faults and warnings, and helps you to resolve potential problems. Use the menu to make sure that the drive setup is functioning correctly.

The table below provides detailed information about the contents of the different views available in the Diagnostics menu.

Menu item	Description
Start, stop, reference summary	This view shows where the drive is currently taking its start and stop commands and reference. The view is updated in real time. If the drive is not starting or stopping as expected, or runs at an undesired speed, use this view to find out where the control comes from.
Limit status	This view describes any limits currently affecting operation. If the drive is running at undesired speed, use this view to find out if any limitations are active.
Active faults	This view shows the currently active faults and provides instructions on how to fix and reset them.
Active warnings	This view shows the currently active warnings and provides instructions on how to fix them.
Fault \& event log inhibits	This view shows up to five simultaneous active start inhibits and how to fix them.
This view lists the faults, warnings and other events that have occurred in the drive. Press Details to see, for each stored fault, the fault code, time and values of parameters (actual signals and status words) $05.80 .$. stored at the time of the fault.	
Fieldbus	This view provides status information and sent and received data from fieldbus for troubleshooting.
Load profile	This view provides status information regarding load distribution (that is, how much of the drive's running time was spent on each load level) and peak load levels.

System info menu

To go the System info menu from the Home view, select Menu - System info.
The System info menu shows information about the drive and the control panel. In problem situations you can also request the drive to generate a QR code for ABB service, so they can better assist you.

The table below shows the different views in the System info menu.

Menu item	Description	Corresponding parameter
QR code	The drive generates a QR code (or a series of QR codes), which contains drive identification data, information on the latest events, and values of status and counter parameters. You can read the QR code with a mobile device containing the ABB service application, which then sends the QR code	
Option slot x name	Shows he following information about the option in the slot:	
	Local) C A $\mathrm{ACS580} \quad \div 0.0 \mathrm{~Hz}$	
	Serial number: 41746A0053 Option slot 1 name: FENA-21 Option slot 1 SW ver: FFPNSOU Option slot 1 MRF: 3AUA0000089108	
	Back 16:06	

Energy efficiency menu

Local)	CS58	$\star 0.0 \mathrm{~Hz}$
Energy efficiency		
Saved		0.0 kWh
Saved		0.00 €
Total s		0.0 metric ton
Current		0.00 kWh
Previous	Wh	0.00 kWh
Back	16:06	View

To go the Energy efficiency menu from the Home view, select Menu - Energy
efficiency.
The Energy efficiency menu provides you with information about energy efficiency, such as saved energy and energy consumption. You can also configure energy calculation settings.

The table below lists the energy efficiency values shown in the Energy efficiency menu, as well as configurable energy calculation settings.

Menu item	Description	Corresponding parameter
Saved energy	Energy saved in kWh compared to direct-on-line motor connection.	45.04 Saved energy
Saved amount	Corresponding money saved compared to direct-on-line motor connection. You can define the currency unit you want to use in submenu Configuration.	45.07 Saved amount
Total saved CO2	Reduction in CO2 emissions in metric tons compared to direct-on-line motor connection.	45.10 Total saved CO2
Current hour kWh	Current hour energy consumption. This is the energy of the last 60 minutes (not necessarily continuous) the drive has been running, not the energy of a calendar hour.	01.50 Current hour kWh
Previous hour kWh	Previous hour energy consumption. The value of 01.51 Previous hour $k W h$ is stored here when its values has been cumulated for 60 minutes.	01.51 Previous hour kWh
Current day kWh	Current day energy consumption. This is the energy of the last 24 hours (not necessarily continuous) the drive has been running, not the energy of a calendar day.	01.52 Current day kWh
Previous day kWh	Previous day energy consumption. The value of 01.53 Previous day $k W h$ is stored here when its value has been cumulated for 24 hours.	01.53 Previous day kWh
Configuration	In this submenu, you can configure energy calculation settings.	

Menu item	Description	Corresponding parameter
Energy optimizer	Enables/disables the energy optimization function. The function optimizes the motor flux so that total energy consumption and motor noise level are reduced when the drive operates below the nominal load. The total efficiency (motor and drive) can be improved by 1...20\% depending on load torque and speed	45.11 Energy optimizer Energy tariff 1Defines energy tariff 1 (price of energy per kWh). Depending on the setting of parameter 45.14 Tariff selection, either this value or 45.13 Energy tariff 2 is used for reference when monetary savings are calculated.
Energy tariff 1	Defines energy tariff 2 (price of energy per kWh).	42 Energy tariff 1
Tariff selection	Selects (or defines a source that selects) which pre-defined energy tariff is used.	45.14 Tariff selection CO2 conversion factorDefines a factor for conversion of saved energy into CO2 emissions (kg/kWh or tn/MWh).
Comparison power	Actual power that the motor absorbs when factor co2 conversion	
fonnected direct-on-line and operating the application. The value is used for reference when energy savings are calculated.	45.19 Comparison power	
Energy calculations reset	Resets the savings counter parameters, eg. 45.04 Saved energy...45.10 Total saved CO2.	45.21 Energy calculations reset
Currency	Defines the currency unit you want to use in energy calculations.	

Backups menu

To go the Backups menu from the Home view, select Menu - Backups.
For backups and restores, see section Backup and restore on page 189.

Options menu

To go to the Options menu, press the Options softkey (\triangle) in any of the Home view displays. The table below provides information about the different options available in the Options menu.

Menu item	Description
Reference	You can change the reference, which is visible on the top right corner of the panel displays.
Direction change	Alters the sign of active reference between positive and negative. Absolute value of reference is not changed.
Select drive	You can select a drive that you want to monitor or control from the list of drives showing the drives connected on the panel bus. You can also clear the list of drives.

Menu item	Description
Edit Home view	You can edit the Home view displays. Scroll with the arrow keys (4) and) to the Home view you want to edit. Select the display slot, that is, which of the current parameter(s) you want to edit (Home views show one to three parameters). Edit the parameter and how you want to display it.
	Local) \quad C $\mathrm{ACS580} \quad * 0.0 \mathrm{~Hz}$
	Done 16:01 Edit
	Display slot
	Parameter: Wotor current
	Display style: Numeric
	Display decimals: $\quad 2$
	Display name: "Motor current"
	Min: 0.00 A
	Done 16:01 Edit
Active faults	Shows the active faults.
Active warnings	Shows the active warnings.
Active inhibits	Shows the active inhibits.

5

Control macros

Contents of this chapter

This chapter describes the intended use, operation and default control connections of the application. At the end of chapter there are tables showing those parameter default values that are not the same for all macros.

General

Control macros are sets of default parameter values suitable for a certain control configuration. When starting up the drive, the user typically selects the best-suited control macro as a starting point, then makes any necessary changes to tailor the settings to their purpose. This usually results in a much lower number of user edits compared to the traditional way of programming a drive.

Control macros can be selected in the Primary settings menu: Menu - Primary settings - Macro or with parameter 96.04 Macro select (page 417).

Note: All macros are made for scalar control except ABB standard which exists in two versions. If you want to use vector control, do as follows:

- Select the ABB standard (vector) macro.
- Check nominal values of the motor: Menu Primary settings - Motor - Nominal values.

Q Identification гun	
Check motor limits	
These motor limits app control. Adjust the valu	ly to vector es if needed:
Winimum speed	-1500.000 гргт \bullet
Maximum speed	1500.00 rpm
Maximum current	3.24 A*
Back 16:02	Next

- Change motor control mode to vector: Menu - Primary settings - Motor - Control mode, and follow the instructions (see the figure on the right).

ABB standard macro

This is the default macro. It provides a general purpose, 2-wire I/O configuration with three constant speeds. One signal is used to start or stop the motor and another to select the direction. The ABB standard macro uses scalar control; for vector control, use the ABB standard (vector) macro (page 80).

Default control connections for the ABB standard macro

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, $\mathrm{B}+\mathrm{A}$-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ See Menu - Primary settings - Start, stop, reference - Constant frequencies or parameter group 28 Frequency reference chain.

DI3	DI4	Operation/Parameter
0	0	Set frequency through AI1
1	0	28.26 Constant frequency 1
0	1	28.27 Constant frequency 2
1	1	28.28 Constant frequency 3

2) See Menu - Primary settings - Ramps or parameter group 28 Frequency reference chain.

DI5	Ramp set	Parameters
0	1	28.72 Freq acceleration time 1 28.73 Freq deceleration time 1
1	2	28.74 Freq acceleration time 2 28.75 Freq deceleration time 2

${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory.
${ }^{5)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{6)}$ Select voltage or current for inputs AI1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Analog frequency reference (Al1)
- Start/stop selection (DI1)
- Direction selection (DI2)
- Constant frequency selection (DI3, DI4)
- Ramp set (1 of 2) selection (DI5)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

ABB standard (vector) macro

The ABB standard (vector) uses vector control; otherwise it is similar to the ABB standard macro, providing a general purpose, 2-wire I/O configuration with three constant speeds. One signal is used to start or stop the motor and another to select the direction. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to ABB standard (vector).

Default control connections for the ABB standard (vector) macro

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, $\mathrm{B}+\mathrm{A}$-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ See Menu - Primary settings - Start, stop, reference - Constant speeds or parameter group 22 Speed reference selection.

DI3	DI4	Operation/Parameter
0	0	Set speed through Al1
1	0	22.26 Constant speed 1
0	1	22.27 Constant speed 2
1	1	22.28 Constant speed 3

${ }^{2)}$ See Menu - Primary settings - Ramps or parameter group 23 Speed reference ramp.

DI5	Ramp set	Parameters
0	1	23.12 Acceleration time 1 23.13 Deceleration time 1
1	2	23.14 Acceleration time 2 23.15 Deceleration time 2

${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory
${ }^{5)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{6)}$ Select voltage or current for inputs AI1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Analog speed reference (Al1)
- Start/stop selection (DI1)
- Direction selection (DI2)
- Constant speed selection (DI3, DI4)
- Ramp set (1 of 2) selection (DI5)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

3-wire macro

This macro is used when the drive is controlled using momentary push-buttons. It provides three constant speeds. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to 3-wire.

Default control connections for the 3-wire macro

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, $\mathrm{B}+\mathrm{A}$-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ Al1 is used as a speed reference if vector control is selected.
${ }^{2)}$ In scalar control (default): See Menu - Primary settings - Start, stop, reference - Constant frequencies or parameter group 28 Frequency reference chain.
In vector control: See Menu - Primary settings - Start, stop, reference - Constant speeds or parameter group 22 Speed reference selection.

DI4	DI5	Operation/Parameter		
		Scalar control (default)	Vector control	
0	0	Set frequency through Al1	Set speed through AI1	
1	0	28.26 Constant frequency 1	22.26 Constant speed 1	
0	1	28.27 Constant frequency 2	22.27 Constant speed 2	
1	1	28.28 Constant frequency 3	22.28 Constant speed 3	

${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory.
${ }^{5)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{6)}$ Select voltage or current for inputs AI1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Analog speed/frequency reference (Al1)
- Start, pulse (DI1)
- Stop, pulse (DI2)
- Direction selection (DI3)
- Constant speed/frequency selection (DI4, DI5)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

Alternate macro

This macro provides an I/O configuration where one signal starts the motor in the forward direction and another signal to start the motor in the reverse direction. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to Alternate.

Default control connections for the Alternate macro

See the notes on the next page.

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, $\mathrm{B}+\mathrm{A}$-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ In scalar control (default): See Menu - Primary settings - Start, stop, reference - Constant frequencies or parameter group 28 Frequency reference chain.
In vector control: See Menu - Primary settings - Start, stop, reference - Constant speeds or parameter group 22 Speed reference selection.

DI3	DI4	Operation/Parameter	
		Scalar control (default)	lector control
0	0	Set frequency through AI1	Set speed through AI1
1	0	28.26 Constant frequency 1	22.26 Constant speed 1
0	1	28.27 Constant frequency 2	22.27 Constant speed 2
1	1	28.28 Constant frequency 3	22.28 Constant speed 3

${ }^{2)}$ In scalar control (default): See Menu - Primary settings - Ramps or parameter group 28 Frequency reference chain. In vector control: See Menu - Primary settings - Ramps or parameter group 23 Speed reference ramp.

DI5	Ramp set	Parameters	
		Scalar control (default)	Vector control
0	1	28.72 Freq acceleration time 1 28.73 Freq deceleration time 1	23.12 Acceleration time 1 23.13 Deceleration time 1
1	2	28.74 Freq acceleration time 2 28.75 Freq deceleration time 2	23.14 Acceleration time 2 23.15 Deceleration time 2

${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory.
5) Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{6)}$ Select voltage or current for inputs Al1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Analog speed/frequency reference (Al1)
- Start motor forward (DI1)
- Start motor in reverse (DI2)
- Constant speed/frequency selection (DI3, DI4)
- Ramp set (1 of 2) selection (DI5)
- Run enable (DI6)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

Motor potentiometer macro

This macro provides a way to adjust the speed with the help of two-push buttons, or a costeffective interface for PLCs that vary the speed of the motor using only digital signals. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to Motor potentiometer.

Default control connections for the Motor potentiometer macro

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, B+, A-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ If DI3 and DI4 are both active or inactive, the frequency/speed reference is unchanged. The existing frequency/speed reference is stored during stop and power down.
${ }^{2)}$ In scalar control (default): See Menu - Primary settings - Start, stop, reference - Constant frequencies or parameter 28.26 Constant frequency 1. In vector control: See Menu - Primary settings - Start, stop, reference - Constant speeds or parameter 22.26 Constant speed 1.
${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory.
${ }^{5)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{6)}$ Select voltage or current for inputs AI1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15, respectively.

Input signals

- Start/Stop selection (DI1)
- Direction selection (DI2)
- Reference up (DI3)
- Reference down (DI4)
- Constant frequency/speed 1 (DI5)
- Run enable (DI6)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

Hand/Auto macro

This macro can be used when switching between two external control devices is needed. Both have their own control and reference signals. One signal is used to switch between these two. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to Hand/Auto.

Default control connections for the Hand/Auto macro

	XI	ference	age and analog inputs and outputs
	1	SCR	Signal cable shield (screen)
1. 10 kohm /	2	Al1	Ext. speed/freq, reference (Hand): $0 \ldots 10 \mathrm{~V}^{5}$
¢ - -	3	AGND	Analog input circuit common
1 1-1	4	+10V	Reference voltage 10 V DC
(1) $/$	5	Al2	Ext. speed/freq, ref. (Auto): $4 . . .20 \mathrm{~mA}^{1,5}$
(7) $i^{\prime} i^{\prime}$	6	AGND	Analog input circuit common
\max -	7	AO1	Output frequency: $0 . . .20 \mathrm{~mA}^{5}$
500 ohm (a)	8	AO2	Motor current: $0 . . .20 \mathrm{~mA}$
(${ }^{\prime}$, 2) $\stackrel{1}{ \pm}$	9	AGND	Analog output circuit common
	2 \&	x. voltag	utput and programmable digital inputs
	10	+24V	Auxiliary voltage output +24 V DC, max. 250 mA
	11	DGND	Auxiliary voltage output common
3)	12	DCOM	Digital input common for all
	13	DI1	Stop (0) / Start (1) (Hand)
	14	DI2	Forward (0) / Reverse (1) (Hand)
	15	DI3	Hand control (0) / Auto control (1)
	16	DI4	Run enable; if 0, drive stops
	17	DI5	Forward (0) / Reverse (1) (Auto)
	18	DI6	Stop (0) / Start (1) (Auto)
	X7,	lay outp	
	19	RO1C	Ready run
π	20	RO1A	250 V AC / 30 V DC
,	21	RO1B	$\rightarrow 2 \mathrm{~A}$
	22	RO2C	Running
	23	RO2A	250 V AC / 30 V DC
	24	RO2B	2 A
	25	RO3C	Fault (-1)
	26	RO3A	250 V AC / 30 V DC
	27	RO3B	2 A
	X5	bedded	dbus
	29	B+	Embedded Modbus RTU (EIA-485). See chapter
	30	A-	Fieldbus control through the embedded fieldbus
	31	DGND	interface (EFB) on page 505.
	S4	TERM	Serial data link termination switch
	S5	BIAS	Serial data link bias resistors switch
	X4	fe torqu	
	34	OUT1	
	35	OUT2	Safe torque off. Factory connection. Both circuits
3) 3)	36	SGND	The Safe torque off function in the Hardware
	37	IN1	manual of the drive.
	38	IN2	
	X10	V AC/D	
See the notes on 4)	40	V AC/DC	R6...R11 only: Ext. 24V AC/DC input to power up the
the next page. 4)	41	V AC/DC	control unit when the main supply is disconnected.

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, B+, A-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ The signal source is powered externally. See the manufacturer's instructions. To use sensors supplied by the drive aux. voltage output, see chapter Electrical installation, section Connection examples of two-wire and three-wire sensors in the Hardware manual of the drive.
${ }^{2)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{3)}$ Connected with jumpers at the factory.
4) Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{5)}$ Select voltage or current for inputs Al1 and Al2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Two speed/frequency analog references (Al1, Al2)
- Control location (Hand or Auto) selection (DI3)
- Start/stop selection, Hand (DI1)
- Direction selection, Hand (DI2)
- Start/stop selection, Auto (DI6)
- Direction selection, Auto (DI5)
- Run enable (DI4)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

Hand/PID macro

This macro controls the drive with the built-in process PID controller. In addition this macro has a second control location for the direct speed/frequency control mode. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to Hand/PID.

Default control connections for the Hand/PID macro

	XI	Reference volt	age and analog inputs and outputs
	1	SCR	Signal cable shield (screen)
110 kohm ¢	2	Al1	Ext. Hand reference or Ext. PID ref.: $0 . . .10 \mathrm{~V}^{1,7)}$
	3	AGND	Analog input circuit common
$1-$	4	+10V	Reference voltage 10 V DC
- $\sim_{0} \times 1$	5	Al2	Actual PID feedback: $4 \ldots 20 \mathrm{~mA}^{2,7)}$
(1) :	6	AGND	Analog input circuit common
max $-7 \frac{1}{1}$	7	AO1	Output frequency: $0 \ldots .20 \mathrm{~mA}^{\prime \prime}$
500 ohm - -	8	AO2	Motor current: $0 \ldots . .20 \mathrm{~mA}$
$\left.\int^{1}, 4\right)^{\frac{1}{2}}$	9	AGND	Analog output circuit common
	2 \&	Aux. voltage ou	utput and programmable digital inputs
	10	+24V	Auxiliary voltage output +24 V DC, max. 250 mA
	11	DGND	Auxiliary voltage output common
	12	DCOM	Digital input common for all
	13	DI1	Stop (0) / Start (1) Hand
	14	DI2	Hand (0) / PID (1) selection
	15	DI3	Constant frequency selection ${ }^{3}$
	16	DI4	Constant frequency selection ${ }^{3}$
	17	DI5	Run enable; if 0, drive stops
	18	DI6	Stop (0) / Start (1) PID
	X7,	Relay outputs	
	19	RO1C	Ready run
\%	20	RO1A	250 V AC / 30 V DC
-	21	RO1B	- 2 A
	22	RO2C	Running
π	23	RO2A	$250 \mathrm{~V} \mathrm{AC} \mathrm{/} 30 \mathrm{~V}$ DC
	24	RO2B	- 2 A
	25	RO3C	Fault (-1)
\checkmark	26	RO3A	250 V AC / 30 V DC
	27	RO3B	2A
	X5	Embedded fiel	dbus
	29	B+	Embedded Modbus RTU (EIA-485). See chapter
	30	A-	Fieldbus control through the embedded fieldbus
	31	DGND	interface (EFB) on page 505.
	S4	TERM	Serial data link termination switch
	S5	BIAS	Serial data link bias resistors switch
	X4	Safe torque off	
	34	OUT1	
	35	OUT2	
5) 5)	36	SGND	must be closed for the drive to start. See chapter The Safe torque off function in the Hardware
	37	IN1	
	38	IN2	
	X10	$24 \mathrm{~V} \mathrm{AC/DC}$	
See the notes on	40	$24 \mathrm{~V} \mathrm{AC/DC}+$ in	R6...R11 only: Ext. 24V AC/DC input to power up the
the next page. 6)	41	$24 \mathrm{~V} \mathrm{AC/DC-} \mathrm{in}$	control unit when the main supply is disconnected.

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, $\mathrm{B}+, \mathrm{A}-$)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ Hand: $0 \ldots 10 \mathrm{~V}$-> frequency reference.
PID: $0 . . .10 \mathrm{~V}$-> $0 . . .100 \%$ PID setpoint.
${ }^{2)}$ The signal source is powered externally. See the manufacturer's instructions. To use sensors supplied by the drive aux. voltage output, see chapter Electrical installation, section Connection examples of two-wire and three-wire sensors in the Hardware manual of the drive.
${ }^{3)}$ In scalar control (default): See Menu - Primary settings - Start, stop, reference - Constant frequencies or parameter group 28 Frequency reference chain.

DI3	DI4	Operation (parameter) Scalar control (default) 0 0
1	0	Set frequency through Al1
0	1	28.26 Constant frequency 1
1	1	28.27 Constant frequency 2

${ }^{4)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{5)}$ Connected with jumpers at the factory.
${ }^{6)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{7}$) Select voltage or current for inputs AI1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Analog reference (Al1)
- Actual feedback from PID (AI2)
- Control location (Hand or PID) selection (DI2)
- Start/stop selection, Hand (DI1)
- Start/stop selection, PID (DI6)
- Constant frequency selection (DI3, DI4)
- Run enable (DI5)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

PID macro

This macro is suitable for applications where the drive is always controlled by PID and the reference comes from analog input AI1. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to PID.

Default control connections for the PID macro

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, $\mathrm{B}+\mathrm{A}$-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ The signal source is powered externally. See the manufacturer's instructions. To use sensors supplied by the drive aux. voltage output, see chapter Electrical installation, section Connection examples of two-wire and three-wire sensors in the Hardware manual of the drive.
${ }^{2)}$ If Constant frequency is activated it overrides the reference from the PID controller output.
${ }^{3)}$ See parameters 40.19 Set 1 internal setpoint sel1 and 40.20 Set 1 internal setpoint sel2 source table.

Source defined by par. 40.19 DI2	Source defined by par. $\mathbf{4 0 . 2 0}$ DI3	Internal setpoint active
0	0	Setpoint source: Al1 (par. 40.16)
1	0	1 (parameter 40.21)
0	1	2 (parameter 40.22)
1	1	3 (parameter 40.23)

${ }^{4)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{5)}$ Connected with jumpers at the factory.
${ }^{6)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{7}$) Select voltage or current for inputs Al1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Analog reference (AI1)
- Actual feedback from PID (AI2)
- Start/Stop selection, PID (DI1)
- Constant setpoint 1 (DI2)
- Constant setpoint 1 (DI3)
- Constant frequency 1 (DI4)
- Run enable (DI5)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

Panel PID macro

This macro is suitable for applications where the drive is always controlled by PID and the setpoint is defined with the control panel. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to Panel PID.

Default control connections for the Panel PID macro

	XI	Reference volta	age and analog inputs and outputs
	1	SCR	Signal cable shield (screen)
1.. 10 kohm ¢	2	Al1	Not configured ${ }^{6}$
1...10 kohm	3	AGND	Analog input circuit common
/	4	+10V	Reference voltage 10 V DC
(1) $/$,	5	Al2	Actual PID feedback: $4 \ldots 20 \mathrm{~mA}{ }^{1,6)}$
- \square^{\prime}	6	AGND	Analog input circuit common
max. \otimes - \square^{-1}	7	AO1	Output frequency: $0 . . .20 \mathrm{~mA}^{6)}$
500 ohm \triangle -	8	AO2	Motor current: $0 \ldots .20 \mathrm{~mA}$
	9	AGND	Analog output circuit common
3) $\stackrel{1}{\underline{1}}$	2 \&	Aux. voltage out	utput and programmable digital inputs
	10	+24V	Auxiliary voltage output +24 V DC, max. 250 mA
	11	DGND	Auxiliary voltage output common
	12	DCOM	Digital input common for all
	13	DI1	Stop (0) / Start (1) PID
	14	DI2	Not configured
	15	DI3	Not configured
	16	DI4	Constant frequency 1: parameter $28.26{ }^{\text {2 }}$
	17	DI5	Run enable; if 0, drive stops
	18	DI6	Not configured
	X7,	Relay outputs	
	19	RO1C	Ready run
7	20	RO1A	250 V AC / 30 V DC
[21	RO1B	12 A
	22	RO2C	Running
\%	23	RO2A	- 250 V AC / 30 V DC
,	24	RO2B	- 2 A
	25	RO3C	Fault (-1)
π	26	RO3A	250 V AC / 30 V DC
	27	RO3B	2 A
	X5	Embedded fiel	dbus
	29	B+	Embedded Modbus RTU (EIA-485). See chapter
	30	A-	Fieldbus control through the embedded fieldbus
	31	DGND	interface (EFB) on page 505.
	S4	TERM	Serial data link termination switch
	S5	BIAS	Serial data link bias resistors switch
	X4	Safe torque off	
	34	OUT1	
	35	OUT2	Safe torque off. Factory connection. Both circuits
4) 4)	36	SGND	The Safe torque off function in the Hardware
	37	IN1	manual of the drive.
	38	IN2	
	X10	$24 \mathrm{~V} \mathrm{AC/DC}$	
See the notes on	40	$24 \mathrm{~V} \mathrm{AC/DC+} \mathrm{in}$	R6...R11 only: Ext. 24V AC/DC input to power up the
the next page.	41	24 V AC/DC- in	control unit when the main supply is disconnected.

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, B+, A-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ The signal source is powered externally. See the manufacturer's instructions. To use sensors supplied by the drive aux. voltage output, see chapter Electrical installation, section Connection examples of two-wire and three-wire sensors in the Hardware manual of the drive.
${ }^{2)}$ If Constant frequency is activated it overrides the reference from the PID controller output.
${ }^{3)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{4)}$ Connected with jumpers at the factory.
${ }^{5)}$ Only frames R6...R11 have terminals 40 and 41 for external 24 V AC/DC input.
${ }^{6)}$ Select voltage or current for inputs AI1 and AI2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- PID setpoint given from the control panel
- Ext1 speed reference
- Torque reference (Al2)
- Start/Stop selection, PID (DI1)
- Constant frequency 1 (DI4)
- Run enable (DI5)

Output signals

- Analog output A01: Motor speed
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

PFC macro

Pump and fan control logic for controlling multiple pumps or fans through the drive's relay outputs. To enable the macro, select it in the Primary settings menu or set parameter 96.04 Macro select to PFC.

Default control connections for the PFC macro

	XI	Reference volta	age and analog inputs and outputs
	1	SCR	Signal cable shield (screen)
¢ * -	2	Al1	PID setpoint source: $0 \ldots 10 \mathrm{~V}^{5}$
$1 . .10$ kohm \downarrow - '	3	AGND	Analog input circuit common
1	4	+10V	Reference voltage 10 V DC
(1) $0 \cdot 1$	5	Al2	Actual PID feedback: $4 \ldots 20 \mathrm{~mA}^{1,5)}$
- \square^{\prime}	6	AGND	Analog input circuit common
$\max \quad[\nabla]!!$	7	AO1	Output frequency: $0 . . .20 \mathrm{~mA}^{5}$
500 ohm \rightarrow -	8	AO2	Motor current: $0 \ldots . .20 \mathrm{~mA}$
\int^{1} 2) $\stackrel{1}{1}_{\frac{1}{2}}$	9	AGND	Analog output circuit common
	2 \&	Aux. voltage out	utput and programmable digital inputs
	10	+24V	Auxiliary voltage output +24 V DC, max. 250 mA
	11	DGND	Auxiliary voltage output common
	12	DCOM	Digital input common for all
	13	DI1	Not configured
	14	DI2	Run enable; if 0, drive stops
	15	DI3	Not configured
	16	D14	Not configured
	17	DI5	Not configured
	18	DI6	Stop (0) / Start (1)
	X7,	Relay outputs	
	19	RO1C	Running
\%	20	RO1A	250 V AC / 30 V DC
7	21	RO1B	2 A
	22	RO2C	Fault (-1)
4	23	RO2A	250 V AC / 30 V DC
-	24	RO2B	2 A
	25	RO3C	PFC2 (2nd motor=1st aux. motor)
\%	26	RO3A	250 V AC / 30 V DC
	27	RO3B	12 A
	X5	Embedded fiele	dbus
	29	B+	Embedded Modbus RTU (EIA-485). See chapter
	30	A-	Fieldbus control through the embedded fieldbus
	31	DGND	interface (EFB) on page 505.
	S4	TERM	Serial data link termination switch
	S5	BIAS	Serial data link bias resistors switch
	X4	Safe torque off	
	34	OUT1	
	35	OUT2	Safe torque off. Factory connection. Both circuits must be closed for the drive to start See chapter
3) 3)	36	SGND	The Safe torque off function in the Hardware
	37	IN1	manual of the drive.
	38	IN2	
	X10	$24 \mathrm{~V} \mathrm{AC/DC}$	
4)	40	24 V AC/DC+in	R6...R11 only: Ext. 24V AC/DC input to power up the
See the notes on 4)	41	24 V AC/DC- in	control unit when the main supply is disconnected.

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, B+, A-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: 0.14...2.5 mm^{2} (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ The signal source is powered externally. See the manufacturer's instructions. To use sensors supplied by the drive aux. voltage output, see chapter Electrical installation, section Connection examples of two-wire and three-wire sensors in the Hardware manual of the drive.
${ }^{2)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{3)}$ Connected with jumpers at the factory.
${ }^{4)}$ Only frames R6...R11 have terminals 40 and 41 for external $24 \vee \operatorname{AC} / D C$ input.
${ }^{5)}$ Select voltage or current for inputs Al1 and Al2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Setpoint for PID (AI1)
- Actual feedback from PID (Al2)
- Run enable (DI2)
- Start/Stop selection (DI6)

Output signals

- Analog output AO1: Output frequency
- Analog output AO2: Motor current
- Relay output 1: Running
- Relay output 2: Fault (-1)
- Relay output 3: PFC2 (first PFC auxiliary motor)

Torque control macro

This macro is used in applications in which torque control of the motor is required. These are typically tension applications, where a particular tension needs to be maintained in the mechanical system. To enable the macro, select it in the Primary settings menu (not yet there) or set parameter 96.04 Macro select to Torque control.

Default control connections for the Torque control macro

See the notes on the next page.
4)
24 V AC/DC- in control unit when the main supply is disconnected.

Terminal sizes:
R1...R5: $\quad 0.2 \ldots 2.5 \mathrm{~mm}^{2}$ (terminals +24V, DGND, DCOM, B+, A-)
$0.14 \ldots 1.5 \mathrm{~mm}^{2}$ (terminals DI, AI, AO, AGND, RO, STO)
R6...R11: $0.14 \ldots 2.5 \mathrm{~mm}^{2}$ (all terminals)
Tightening torques: $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(0.4 \mathrm{lbf} \cdot \mathrm{ft})$

Notes:

${ }^{1)}$ The signal source is powered externally. See the manufacturer's instructions. To use sensors supplied by the drive aux. voltage output, see chapter Electrical installation, section Connection examples of two-wire and three-wire sensors in the Hardware manual of the drive.
${ }^{2)}$ Ground the outer shield of the cable 360 degrees under the grounding clamp on the grounding shelf for the control cables.
${ }^{3)}$ Connected with jumpers at the factory.
${ }^{4)}$ Only frames R6...R11 have terminals 40 and 41 for external $24 \vee \operatorname{AC} / D C$ input.
${ }^{5)}$ Select voltage or current for inputs Al1 and Al2 and output AO1 with parameters 12.15, 12.25 and 13.15 , respectively.

Input signals

- Ext1 speed reference (Al1)
- Torque reference (Al2)
- Start/Stop selection (DI1)
- In speed control: Forward/ Reverse selection (DI2)
- Speed control / Torque control selection (DI3)
- In speed control: Constant speed (DI4)
- Ramp 1 / Ramp 2 selection (DI5)
- Run enable (DI6)

Output signals

- Analog output A01: Motor speed
- Analog output AO2: Motor current
- Relay output 1: Ready run
- Relay output 2: Running
- Relay output 3: Fault (-1)

Parameter default values for different macros

Chapter Parameters on page 195 shows the default values of all parameters for the ABB standard macro (factory macro). Some parameters have different default values for other macros. The tables below lists the default values for those parameter for each macro.

96.04	Macro select	$\begin{aligned} & 1= \\ & A B B \text { standard } \end{aligned}$	$\begin{aligned} & 17= \\ & A B B \text { stan- } \\ & \text { dard (vector) } \end{aligned}$	$\begin{aligned} & \hline 11= \\ & 3 \text {-wire } \end{aligned}$	$\begin{aligned} & \hline 12= \\ & \text { Alternate } \end{aligned}$	$13=$ Motor potentiometer
10.24	RO1 source	2 = Ready run				
10.27	RO2 source	7 = Running				
10.30	RO3 source	15 = Fault (-1)				
12.20	Al1 scaled at Al1 max	50.000	1500.000	50.000	50.000	50.000
13.12	AO1 source	2 = Output frequency	1 = Motor speed used	2 = Output frequency	2 = Output frequency	2 = Output frequency
13.18	AO1 source max	50.0	1500.0	50.0	50.0	50.0
19.11	Ext1/Ext2 selection	$0=E X T 1$				
20.01	Ext1 commands	$\begin{aligned} & 2 \text { = In1 Start; } \\ & \text { In2 Dir } \end{aligned}$	$\begin{aligned} & 2 \text { = In1 Start; } \\ & \text { In2 Dir } \end{aligned}$	$\begin{aligned} & \hline 5 \text { = In1P Start; } \\ & \ln 2 \text { Stop; } \ln 3 \text { Dir } \end{aligned}$	3 = ln1 Start fwd; In2 Start rev	$\begin{aligned} & 2 \text { = In1 Start; } \\ & \text { In2 Dir } \end{aligned}$
20.03	Ext1 in1 source	2 = DI1				
20.04	Ext1 in2 source	$3=D / 2$				
20.05	Ext1 in3 source	0 = Always off	0 = Always off	$4=D / 3$	0 = Always off	0 = Always off
20.06	Ext2 commands	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$0=N o t$ selected	$0=N o t$ selected	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
20.08	Ext2 in1 source	0 = Always off				
20.09	Ext2 in2 source	0 = Always off				
20.12	Run enable 1 source	1 = Selected	1 = Selected	1 = Selected	7 = DI6	7 = DI6
22.11	Ext1 speed ref1	1 = Al1 scaled	15 = Motor potentiometer			
22.18	Ext2 speed ref1	0 = Zero				
22.22	Constant speed sel1	$4=$ D/3	$4=D / 3$	$5=D / 4$	$4=D / 3$	$6=$ D/5
22.23	Constant speed sel2	$5=$ D/4	$5=$ D/4	$6=$ D $/ 5$	$5=D / 4$	0 = Always off

96.04 Macro select	$\begin{aligned} & 2= \\ & \text { Hand/Auto } \end{aligned}$	$\begin{aligned} & \hline 3= \\ & \text { Hand/PID } \end{aligned}$	$\begin{aligned} & 14= \\ & \text { PID } \end{aligned}$	$\begin{aligned} & 15= \\ & \text { Panel PID } \end{aligned}$	$\begin{aligned} & 16= \\ & \text { PFC } \end{aligned}$
10.24 RO1 source	2 = Ready run	7 = Running			
10.27 RO2 source	7 = Running	7 = Running	7 = Running	7 = Running	15 = Fault (-1)
10.30 RO3 source	15 = Fault (-1)	$46=P F C 2$			
12.20 Al1 scaled at Al1 max	50.000	50.000	50.000	50.000	50.000
13.12 AO1 source	$2 \text { = Output }$ frequency	$2 \text { = Output }$ frequency	$2 \text { = Output }$ frequency	$2 \text { = Output }$ frequency	$2 \text { = Output }$ frequency
13.18 A01 source max	50.0	50.0	50.0	50.0	50.0
19.11 Ext1/Ext2 selection	$5=D / 3$	$4=D / 2$	$0=E X T 1$	$0=E X T 1$	$5=D / 3$
20.01 Ext1 commands	$\begin{aligned} & 2=\ln 1 \text { Start; } \\ & \text { In2 Dir } \end{aligned}$	1 = In1 Start	1 = In1 Start	1 = ln1 Start	1 = In1 Start
20.03 Ext1 in1 source	2 = DI1	$2=$ D $/ 1$	$2=$ D $/ 1$	$2=$ D 11	$2=$ D $/ 1$
20.04 Ext1 in2 source	3 = DI2	0 = Always off			
20.05 Ext1 in3 source	0 = Always off				
20.06 Ext2 commands	$\begin{aligned} & 2=\ln 1 \text { Start; } \\ & \text { In2 Dir } \end{aligned}$	$1=\ln 1$ Start	$0=N o t$ selected	$0=N o t$ selected	$1=\ln 1$ Start
20.08 Ext2 in1 source	7 = DI6	7 = DI6	0 = Always off	0 = Always off	7 = DI6
20.09 Ext2 in2 source	$6=$ DI5	0 = Always off			
20.12 Run enable 1 source	$5=$ D/4	$6=$ D 15	$6=$ D $/ 5$	$6=$ D $/ 5$	$3=D / 2$
22.11 Ext1 speed ref1	1 = Al1 scaled	1 = Al1 scaled	$16=P I D$	$16=P I D$	1 = Al1 scaled
22.18 Ext2 speed ref1	2 = Al2 scaled	$16=P I D$	0 = Zero	0 = Zero	$16=P I D$
22.22 Constant speed sel1	0 = Always off	$4=D / 3$	$5=$ D/4	$5=$ D/4	0 = Always off
22.23 Constant speed sel2	0 = Always off	$5=$ D/4	0 = Always off	0 = Always off	0 = Always off

96.04	Macro select	$28=$ Torque control
10.24	RO1 source	7 = Ready run
10.27	RO2 source	15 = Running
10.30	RO3 source	46 = Fault (-1)
12.20	Al1 scaled at Al1 max	50.000
13.12	AO1 source	1 = Motor speed used
13.18	AO1 source max	50.0
19.11	Ext1/Ext2 selection	$5=$ D/3
19.14	Ext2 control mode	3 = Torque
20.01	Ext1 commands	2 = In1 Start; In2 Dir
20.03	Ext1 in1 source	$2=$ DI1
20.04	Ext1 in2 source	$3=D / 2$
20.05	Ext1 in3 source	0 = A/ways off
20.06	Ext2 commands	$1=\ln 1$ Start
20.08	Ext2 in1 source	$2=$ D 11
20.09	Ext2 in2 source	$3=D / 2$
20.12	Run enable 1 source	7 = D/6
22.11	Ext1 speed ref1	1 = Al1 scaled
22.18	Ext2 speed ref1	2 = Al2 scaled
22.21	Constant speed function	Bit 0 Constant speed $=$ Separate, Bit 1 Direction enable =Accord
22.22	Constant speed sel1	5 = D/4
22.23	Constant speed sel2	$0=$ Always off

96.04	Macro select	$\begin{aligned} & 1= \\ & A B B \text { standard } \end{aligned}$	$17=$ ABB standard (vector)	$\begin{aligned} & 11= \\ & 3 \text {-wire } \end{aligned}$	$12=$ Alternate	$13=$ Motor potentiometer
22.71	Motor potentiometer function	0 = Disabled	0 = Disabled	0 = Disabled	0 = Disabled	1 = Enabled (init at stop /power-up)
22.73	Motor potentiometer up source	0 = Not used	$4=$ D $/ 3$			
22.74	Motor potentiometer down source	0 = Not used	$5=$ D/4			
23.11	Ramp set selection	$6=$ D $/ 5$	$6=$ D $/ 5$	$0=A c c / D e c$ time 1	$6=$ D $/ 5$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$
28.11	Ext1 frequency ref1	1 = Al1 scaled	15 = Motor potentiometer			
28.15	Ext1 frequency ref2	0 = Zero				
28.22	Constant frequency sel1	$4=D / 3$	$4=D / 3$	$5=$ D/4	$4=D / 3$	$6=$ D/5
28.23	Constant frequency sel2	$5=$ D/4	$5=$ D/4	$6=$ D $/ 5$	$5=$ D/4	0 = Always off
28.71	Freq ramp set selection	$6=$ D $/ 5$	$6=$ DI5	$0=A c c / D e c$ time 1	$6=$ D/5	$0=A c c / D e c$ time 1
40.07	Process PID operation mode	0 = Off				
40.16	Set 1 setpoint 1 source	$11=A / 1$ percent				
40.17	Set 1 setpoint 2 source	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.19	Set 1 internal setpoint sel1	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.20	Set 1 internal setpoint sel2	$0=N o t$ selected	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$0=N o t$ selected	$0=N o t$ selected	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.32	Set 1 gain	1.00	1.00	1.00	1.00	1.00
40.33	Set 1 integration time	60.0	60.0	60.0	60.0	60.0
76.21	Multipump configuration	0 = Off				
76.25	Number of motors	1	1	1	1	1
76.27	Max number of motors allowed	1	1	1	1	1
99.04	Motor control mode	1 = Scalar	0 = Vector	1 = Scalar	1 = Scalar	1 = Scalar

96.04	Macro select	$2=$ Hand/Auto	$3=$ Hand/PID	$\begin{aligned} & 14= \\ & P I D \end{aligned}$	$\begin{aligned} & 15= \\ & \text { Panel PID } \end{aligned}$	$\begin{aligned} & 16= \\ & \text { PFC } \end{aligned}$
22.71	Motor potentiometer function	0 = Disabled	$0=$ Disabled	$0=$ Disabled	$0=$ Disabled	0 = Disabled
22.73	Motor potentiometer up source	$0=$ Not used				
22.74	Motor potentiometer down source	$0=$ Not used				
23.11	Ramp set selection	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$
28.11	Ext1 frequency ref1	1 = Al1 scaled	1 = Al1 scaled	$16=$ PID	$16=$ PID	1 = Al1 scaled
28.15	Ext1 frequency ref2	$2=$ Al2 scaled	$16=$ PID	$0=$ Zero	$0=$ Zero	$16=$ PID
28.22	Constant frequency sel1	0 = A/ways off	$4=$ DI3	$5=$ D/4	$5=D / 4$	0 = Always off
28.23	Constant frequency sel2	0 = Always off	$5=$ D/4	0 = Always off	0 = Always off	0 = Always off
28.71	Freq ramp set selection	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$	$\begin{aligned} & 0=A c c / D e c \\ & \text { time } 1 \end{aligned}$
40.07	Process PID operation mode	0 = Off	2 = On when drive running			
40.16	Set 1 setpoint 1 source	$\begin{aligned} & 11=A / 1 \\ & \text { percent } \end{aligned}$	$11=A / 1$ percent	$\begin{aligned} & \hline 11=A / 1 \\ & \text { percent } \end{aligned}$	$\begin{aligned} & 13=\text { Control } \\ & \text { panel (ref } \end{aligned}$	$\begin{aligned} & 11=A / 1 \\ & \text { percent } \end{aligned}$
40.17	Set 1 setpoint 2 source	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$2 \text { = Internal }$ setpoint	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=N o t \\ & \text { selected } \end{aligned}$
40.19	Set 1 internal setpoint sel1	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$3=D / 2$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.20	Set 1 internal setpoint sel2	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$4=$ D 33	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.32	Set 1 gain	1.00	1.00	1.00	1.00	2.50
40.33	Set 1 integration time	60.0	60.0	60.0	60.0	3.0
76.21	Multipump configuration	0 = Off	0 = Off	0 = Off	0 = Off	$2=P F C$
76.25	Number of motors	1	1	1	1	2
76.27	Max number of motors allowed	1	1	1	1	2
99.04	Motor control mode	1 = Scalar				

96.04	Macro select	$28=$ Torque control
22.71	Motor potentiometer function	$0=$ Disabled
22.73	Motor potentiometer up source	$0=$ Not used
22.74	Motor potentiometer down source	0 = Not used
23.11	Ramp set selection	$6=D / 5$
26.11	Torque ref1 source	$2=$ Al2 scaled
28.11	Ext1 frequency ref1	1 = Al1 scaled
28.15	Ext1 frequency ref2	$2=$ Al2 scaled
28.22	Constant frequency sel1	$5=$ DI4
28.23	Constant frequency sel2	0 = Always off
28.71	Freq ramp set selection	$6=$ D/5
40.07	Process PID operation mode	0 = Off
40.16	Set 1 setpoint 1 source	$\begin{aligned} & 11=A / 1 \\ & \text { percent } \end{aligned}$
40.17	Set 1 setpoint 2 source	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.19	Set 1 internal setpoint sel1	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.20	Set 1 internal setpoint sel2	$\begin{aligned} & 0=\text { Not } \\ & \text { selected } \end{aligned}$
40.32	Set 1 gain	1.00
40.33	Set 1 integration time	60.0
76.21	Multipump configuration	0 = Off
76.25	Number of motors	1
76.27	Max number of motors allowed	1
99.04	Motor control mode	$0=$ Vector

Program features

What this chapter contains

This chapter describes some of the more important functions within the control program, how to use them and how to program them to operate. It also explains the control locations and operating modes.

Local control vs. external control

The ACS580 has two main control locations: external and local. The control location is selected with the Loc/Rem key on the control panel or in the PC tool.

Local control

The control commands are given from the control panel keypad or from a PC equipped with Drive composer when the drive is in local control. Speed and torque control modes are available in vector motor control mode; frequency mode is available when scalar motor control mode is used (see parameter 19.16).

Local control is mainly used during commissioning and maintenance. The control panel always overrides the external control signal sources when used in local control. Changing the control location to local can be prevented by parameter 19.17.

The user can select by a parameter (49.05) how the drive reacts to a control panel or PC tool communication break. (The parameter has no effect in external control.)

Settings and diagnostics

Parameters: 19.16 Local control mode...19.17 Local control disable (page 246) and 49.05 Communication loss action (page 384).

Events: -

External control

When the drive is in external (remote) control, control commands are given through

- the I/O terminals (digital and analog inputs), or optional I/O extension modules
- the fieldbus interface (via the embedded fieldbus interface or an optional fieldbus adapter module).

Two external control locations, EXT1 and EXT2, are available. The user can select the sources of the start and stop commands separately for each location in the Primary settings menu (Menu - Primary settings - Start, stop, reference) or by setting parameters $20.01 \ldots 20.10$. The operating mode can be selected separately for each location, which enables quick switching between different operating modes, for example speed and torque control. Selection between EXT1 and EXT2 is done via any binary source such as a digital input or fieldbus control word (Menu - Primary settings - Start, stop, reference - Secondary control location or parameter 19.11). The source of reference is selectable for each operating mode separately.

Settings and diagnostics

Parameters: 20.01 Ext1 commands...20.10 Ext2 in3 source (page 247), and 19.11 Ext1/Ext2 selection (page 245).

Events: -

Communication fail functionality

The communication fail functionality ensures continuous process without interruptions. If there is a communication loss, the drive automatically changes the control location from EXT1 to EXT2. This enables process to be controlled, for example, with the drive PID controller. When the original control location recovers, the drive automatically switches control back to the communication network (EXT1).

Block diagram: EXT1/EXT2 selection for speed control

Block diagram: EXT1/EXT2 selection for frequency control

Block diagram: Run enable source for EXT1

The figure below shows the parameters that select the interface for run enable for external control location EXT1.

0	Not selected	Select	$\begin{array}{\|l\|l\|} & \text { EXT1 } \\ - & \text { Run } \end{array}$
$\begin{aligned} & 1 \\ & \text { DI1 } \\ & \vdots \\ & \text { DI6 } \end{aligned}$	Selected	C	
	D/1		
	$\dot{\text { D. } 6}$		
Embedded fieldbus	EFB MCW bit 3		
Fieldbus adapter	FBA A MCW bit 3	20.12	
Timed function	Timed function 1... 3		
Supervision A bit in a parameter	Supervision 1... 3		
	Other [bit]		

Settings and diagnostics

Menu - Primary settings - Start, stop, reference - Secondary control location;
 Menu - Primary settings - Start, stop, reference

Parameters: 19.11 Ext1/Ext2 selection (page 245) and 20.01 Ext1 commands... 20.10 Ext2 in3 source (page 247).

Events: -

Operating modes of the drive

The drive can operate in several operating modes with different types of reference. The mode is selectable for each control location (Local, EXT1 and EXT2) in parameter group 19 Operation mode. An overview of the different reference types and control chains is shown below.

The following is a more detailed representation of the reference types and control chains. The page numbers refer to detailed diagrams in chapter Control chain diagrams.

Speed control mode

The motor follows a speed reference given to the drive. This mode can be used either with estimated speed used as feedback.

Speed control mode is available in both local and external control. It is supported in vector motor control only.

Speed control uses speed reference chain. Select speed reference with parameters in group 22 Speed reference selection on page 266.

Settings and diagnostics

Parameter group: 22 Speed reference selection (page 266).

Events:

Torque control mode

Motor torque follows a torque reference given to the drive. Torque control mode is available in both local and external control. It is supported in vector motor control only.

Torque control uses torque reference chain. Select torque reference with parameters in group 26 Torque reference chain on page 286.

Settings and diagnostics

Parameter group: 26 Torque reference chain (page 286).
Events:

Frequency control mode

The motor follows a frequency reference given to the drive. Frequency control is available in both local and external control. It is supported in scalar motor control only.

Frequency control uses frequency reference chain. Select frequency reference with parameters in group 28 Frequency reference chain on page 290.

Settings and diagnostics

Parameter group: 28 Frequency reference chain (page 290).
Events:

Special control modes

In addition to the above-mentioned control modes, the following special control modes are available:

- Process PID control. For more information, see section Process PID control (page 131).
- Emergency stop modes OFF1 and OFF3: Drive stops along the defined deceleration ramp and drive modulation stops, see section Emergency stop (page 176).
- Jogging mode: Drive starts and accelerates to the defined speed when the jogging signal is activated. For more information, see section Jogging (page 165).
- Pre-magnetization: DC magnetization of the motor before start. For more information, see section Pre-magnetization (page 161).
- DC hold: Locking the rotor at (near) zero speed in the middle of normal operation. For more information, see section DC hold (page 162).
- Pre-heating (motor heating): Keeping the motor warm when the drive is stopped. For more information, see section Pre-heating (Motor heating) (page 163).

Settings and diagnostics

Parameter groups: 06 Control and status words (page 208), 20 Start/stop/direction (page 247), 22 Speed reference selection (page 266), 23 Speed reference ramp (page 276 and 40 Process PID set 1 (page 353).

Events: -

Drive configuration and programming

The drive control program performs the main control functions, including speed, torque and frequency control, drive logic (start/stop), I/O, feedback, communication and protection functions. Control program functions are configured and programmed with parameters.

Configuring via parameters

Parameters configure all of the standard drive operations and can be set via

- the control panel, as described in chapter Control panel
- the Drive composer PC tool, as described in Drive composer user's manual (3AUA0000094606 [English]), or
- the fieldbus interface, as described in chapters Fieldbus control through the embedded fieldbus interface (EFB) and Fieldbus control through a fieldbus adapter.

All parameter settings are stored automatically to the permanent memory of the drive. However, if an external +24 V DC power supply is used for the drive control unit, ABB highly recommends to force a save by using parameter 96.07 Parameter save manually before powering down the control unit after any parameter changes have been made.

If necessary, the default parameter values can be restored by parameter 96.06 Parameter restore.

Settings and diagnostics
Parameters: 96.06 Parameter restore...96.07 Parameter save manually (page 418).

Events: -

Adaptive programming

Conventionally, the user can control the operation of the drive by parameters. However, the standard parameters have a fixed set of choices or a setting range. To further customize the operation of the drive, an adaptive program can be constructed out of a set of function blocks.

The Drive composer pro PC tool (version 1.10 or later, available separately) has an Adaptive programming feature with a graphical user interface for building the custom program. The function blocks include the usual arithmetic and logical functions, as well as for example, selection, comparison and timer blocks. The adaptive program is executed on a 10 ms time level.

The physical inputs, drive status information, actual values, constants and parameters can be used as the input for the program. The output of the program can be used for example, as a start signal, external event or reference, or connected to the drive outputs. See the table below for a listing of the available inputs and outputs.

If you connect the output of the adaptive program to a selection parameter that is a pointer parameter, the selection parameter will be write-protected.

Example

If parameter 31.01 External event 1 source is connected to an adaptive programming block output, the parameter value is shown as Adaptive program on a control panel or PC tool. The parameter is write-protected (= the selection cannot be changed).

The status of the adaptive program is shown by parameter 07.30 Adaptive program status. The adaptive program can be disabled by 96.70 Disable adaptive program.

For more information, see the Adaptive programming application guide (3AXD50000028574 [English].

Inputs available to the adaptive program	
Input	Source
I/O	10.02 DI delayed status, bit 0
DI1	10.02 DI delayed status, bit 1
DI2	10.02 DI delayed status, bit 2
DI3	10.02 DI delayed status, bit 3
DI4	10.02 DI delayed status, bit 4
DI5	10.02 DI delayed status, bit 5
DI6	12.11 Al1 actual value
AI1	12.21 Al2 actual value
Al2	01
Actual signals	01.01 Motor speed used
Motor speed	01.06 Output frequency
Output frequency	01.07 Motor current
Motor current	01.10 Motor torque
Motor torque	01.17 Motor shaft power
Motor shaft power	
Status	06.16 Drive status word 1, bit 0
Enabled	

Inputs available to the adaptive program	
Input	Source
Inhibited	06.16 Drive status word 1, bit 1
Ready to start	06.16 Drive status word 1, bit 3
Tripped	06.11 Main status word, bit 3
At setpoint	06.11 Main status word, bit 8
Limiting	06.16 Drive status word 1, bit 7
Ext1 active	06.16 Drive status word 1, bit 10
Ext2 active	06.16 Drive status word 1, bit 11
Data storage	
Data storage 1 real32	47.01 Data storage 1 real32
Data storage 2 real32	47.02 Data storage 2 real32
Data storage 3 real32	47.03 Data storage 3 real32
Data storage 4 real32	47.04 Data storage 4 real32

Outputs available to the adaptive program	
Output	Target
I/O	
RO1	10.24 RO1 source
RO2	10.27 RO2 source
RO3	10.30 RO3 source
AO1	13.12 AO1 source
AO2	13.22 AO2 source
Start control	
Ext1/Ext2 selection	19.11 Ext1/Ext2 selection
Run enable 1	20.12 Run enable 1 source
Ext1 in1 cmd	20.03 Ext1 in1 source
Ext1 in2 cmd	20.04 Ext2 in2 source
Ext1 in3 cmd	20.05 Ext1 in3 source
Ext2 in1 cmd	20.08 Ext2 in1 source
Ext2 in2 cmd	20.09 Ext2 in2 source
Ext2 in3 cmd	20.10 Ext2 in3 source
Fault reset	31.11 Fault reset selection
Speed control	
Ext1 speed reference	22.11 Ext1 speed ref1
Speed proportional gain	25.02 Speed proportional gain
Speed integration time	25.03 Speed integration time
Acceleration time 1	23.12 Acceleration time 1
Deceleration time 1	23.13 Deceleration time 1
Frequency control	
Ext1 frequency reference	28.11 Ext1 frequency ref1
Torque control	
Ext1 torque reference	26.11 Torque ref1 source
Ext2 torque reference	26.12 Torque ref2 source
Limit function	
Minimum torque 2	30.21 Min torque 2 source
Maximum torque 2	30.22 Max torque 2 source
Events	
External event 1	31.01 External event 1 source
External event 2	31.03 External event 2 source

Outputs available to the adaptive program	
Output	Target
External event 3	31.05 External event 3 source
External event 4	31.07 External event 4 source
External event 5	31.09 External event 5 source
Data Storage	47.01 Data storage 1 real32
Data storage 1 real32	47.02 Data storage 2 real32
Data storage 2 real32	47.03 Data storage 3 real32
Data storage 3 real32	47.04 Data storage 4 real32
Data storage 4 real32	
Process PID	40.16 Set 1 setpoint 1 source
Set 1 setpoint 1	40.17 Set 1 setpoint 2 source
Set 1 setpoint 2	40.08 Set 1 feedback 1 source
Set 1 feedback 1	40.09 Set 1 feedback 2 source
Set 1 feedback 2	40.32 Set 1 gain
Set 1 gain	40.33 Set 1 integration time
Set 1 integration time	40.49 Set 1 tracking mode
Set 1 tracking mode	40.50 Set 1 tracking ref selection
Set 1 track reference	

Adaptive program fault and aux code formats
The format of the aux code:

Bits 24-31: State number	Bits 16-23: block number	Bits $0-15$: error code

If the state number is zero but the block number has a value, the fault is related to a function block in the base program. If both state number and block number are zero, the fault is a generic fault that is not related to a specific block.

See fault 64A6.

Sequence program

An adaptive program can contain base program and sequence program parts. Base program is run continuously when adaptive program is in running mode. The functionality of the base program is programmed using function blocks and system inputs and outputs.

Sequence program is a state machine. This means that only one state of the sequence program is run at a time. You can create a sequence program by adding states and programming the state programs using the same program elements as in the base program. You can program state transitions by adding state transition outputs to the state programs. The state transition rules are programmed using function blocks.

The number of the active state of the sequence program is shown by parameter 07.31 AP sequence state.

Settings and diagnostics
Parameter groups: 01 Actual values (page 199), 06 Control and status words (page 208), 07 System info (page 214), 10 Standard DI, RO (page 216), 12 Standard AI (page 226), 13 Standard AO (page 231), 19 Operation mode (page 245), 20 Start/stop/direction (page 247), 23 Speed reference ramp (page 276), 25 Speed control (page 280), 26 Torque reference chain (page 286), 30 Limits (page 301), 31 Fault functions (page 309), 40 Process PID set 1 (page 353), 47 Data storage (page 383), and 96 System (page 415).

Event: 64A6 Adaptive program (page 498).

Control interfaces

Programmable analog inputs

The control unit has two programmable analog inputs. Each of the inputs can be independently set as a voltage ($0 / 2 \ldots 10 \mathrm{~V}$) or current $(0 / 4 \ldots 20 \mathrm{~mA})$ input with parameters. Each input can be filtered, inverted and scaled.

Settings and diagnostics

Parameter group: 12 Standard AI (page 226).
Events: -

Programmable analog outputs

The control unit has two current ($0 \ldots .20 \mathrm{~mA}$) analog outputs. Analog output 1 can be set as a voltage ($0 / 2 \ldots 10 \mathrm{~V}$) or current $(0 / 4 \ldots 20 \mathrm{~mA})$ output with a parameter. Analog output 2 always uses current. Each output can be filtered, inverted and scaled.

Settings and diagnostics

Parameter group: 13 Standard AO (page 231).
Events: -

Programmable digital inputs and outputs

The control unit has six digital inputs.
Digital input DI5 can be used as a frequency input. The control panel shows the appropriate selection only.

Digital input DI6 can used as a thermistor input.
Six digital inputs can be added by using a CHDI-01 115/230 V digital input extension module and one digital output by using a CMOD-01 multifunction extension module.

Settings and diagnostics
Parameter groups: 10 Standard DI, RO (page 216) and 11 Standard DIO, FI, FO (page 225).

Events: -

Programmable frequency input and output

Digital input DI5 can be used as a frequency input.
A frequency output can be implemented with a CMOD-01 multifunction extension module.

Settings and diagnostics

Parameter groups: 10 Standard DI, RO (page 216) and 11 Standard DIO, FI, FO (page 225).

Events: -

Programmable relay outputs

The control unit has three relay outputs. The signal to be indicated by the outputs can be selected by parameters.

Two relay outputs can be added by using a CMOD-01 multifunction extension module or a CHDI-01 115/230 V digital input extension module.

Settings and diagnostics

Parameter group: 10 Standard DI, RO (page 216).
Events: -

Programmable I/O extensions

Inputs and outputs can be added by using a CMOD-01 or CMOD-02 multifunction extension module or a CHDI-01 115/230 V digital input extension module. The module is mounted on option slot 2 of the control unit.

The table below shows the number of I/O on the control unit as well as optional CMOD-01, CMOD-02 and a CHDI-01 modules.

Location	Digital inputs (DI)	Digital outputs (DO)	Digital I/Os (DIO)	Analog inputs (AI)	Analog outputs (AO)	Relay outputs (RO)
Control unit	6	-	-	2	2	3
CMOD-01	-	1	-	-	-	2
CMOD-02	-	-	-	-	-	1 (non- configurable)
CHDI-01	$6(115 / 230 \mathrm{~V}$)	-	-	-	-	2

The I/O extension module can be activated and configured using parameter group 15.

The CMOD-02 offers, in addition to the relay output (non-configurable), a $+24 \mathrm{VDC} / \mathrm{AC}$ input and a thermistor input.

Note: The configuration parameter group contains parameters that display the values of the inputs on the extension module. These parameters are the only way of utilizing the inputs on an I/O extension module as signal sources. To connect to an input, choose the setting Other in the source selector parameter, then specify the appropriate value parameter (and bit, for digital signals) in group 15.

Note: With the CHDI-01, you can use up to six additional digital inputs. The CHDI-01 does not affect the standard digital inputs on the control unit.

Settings and diagnostics

Parameter group: 15 I/O extension module (page 236).
Events: -

Fieldbus control

The drive can be connected to several different automation systems through its fieldbus interfaces. See chapters Fieldbus control through the embedded fieldbus interface (EFB) (page 505) and Fieldbus control through a fieldbus adapter (page 535).

Settings and diagnostics

Parameter groups: 50 Fieldbus adapter (FBA) (page 386), 51 FBA A settings (page 390), 52 FBA A data in (page 392), and 53 FBA A data out (page 392) and 58 Embedded fieldbus (page 393).

Events: -

Application control

Reference ramping

Acceleration and deceleration ramping times can be set individually for speed, torque and frequency reference (Menu - Primary settings - Ramps).

With a speed or frequency reference, the ramps are defined as the time it takes for the drive to accelerate or decelerate between zero speed or frequency and the value defined by parameter 46.01 or 46.02 . The user can switch between two preset ramp sets using a binary source such as a digital input. For speed and frequency reference, also the shape of the ramp can be controlled.

With a torque reference, the ramps are defined as the time it takes for the reference to change between zero and nominal motor torque (parameter 01.30).

Variable slope

Variable slope controls the slope of the speed ramp during a reference change. With this feature a constantly variable ramp can be used. See parameters 23.28 and 23.29.

Variable slope is only supported in remote control.

Special acceleration/deceleration ramps

The acceleration/deceleration times for the jogging function can be defined separately; see section Jogging (page 165).

The change rate of the motor potentiometer function (page 150) is adjustable. The same rate applies in both directions.

A deceleration ramp can be defined for emergency stop ("Off3" mode).

Settings and diagnostics

Menu - Primary settings - Ramps

Parameters:

- Speed reference ramping: Parameters 23.11 Ramp set selection...23.15 Deceleration time 2 (page 276) and 46.01 Speed scaling (pages 379).
- Torque reference ramping: Parameters 01.30 Nominal torque scale (page 200), 26.18 Torque ramp up time and 26.19 Torque ramp down time(pages 289).
- Frequency reference ramping: Parameters 28.71 Freq ramp set selection...28.75 Freq deceleration time 2 (page 298) and 46.02 Frequency scaling (pages 379).
- Jogging: Parameters 23.20 Acc time jogging and 23.21 Dec time jogging (page 277).
- Motor potentiometer: Parameter 22.75 Motor potentiometer ramp time (page 275).
- Emergency stop ("Off3" mode): Parameter 23.23 Emergency stop time (page 278).
- Variable slope: Parameters 23.28 Variable slope enable (page 278) and 23.29 Variable slope rate (page 278).

Events:

Constant speeds/frequencies

Constant speeds and frequencies are predefined references that can be quickly activated, for example, through digital inputs. It is possible to define up to 7 speeds for speed control and 7 constant frequencies for frequency control.

\triangle
WARNING: Speeds and frequencies override the normal reference irrespective of where the reference is coming from.

Settings and diagnostics

Menu - Primary settings - Start, stop, reference - Constant frequencies, Menu - Primary settings - Start, stop, reference - Constant speeds

Parameter groups: 22 Speed reference selection (page 266) and 28 Frequency reference chain (page 290).

Events: -

Critical speeds/frequencies

Critical speeds (sometimes called "skip speeds") can be predefined for applications where it is necessary to avoid certain motor speeds or speed ranges because of, for example, mechanical resonance problems.

The critical speeds function prevents the reference from dwelling within a critical band for extended times. When a changing reference (22.87 Speed reference act 7) enters a critical range, the output of the function (22.01 Speed ref unlimited) freezes until the reference exits the range. Any instant change in the output is smoothed out by the ramping function further in the reference chain.

When the drive is limiting the allowed output speeds/frequencies, it limits to the absolutely lowest critical speed (critical speed low or critical frequency low) when accelerating from standstill, unless the speed reference is over the upper critical speed/ frequency limit.

The function is also available for scalar motor control with a frequency reference. The input of the function is shown by 28.96 Frequency ref act 7.

Example

A fan has vibrations in the range of $540 \ldots 690 \mathrm{rpm}$ and $1380 \ldots 1560 \mathrm{rpm}$. To make the drive avoid these speed ranges,

- the critical speeds function by turning on bit 0 of parameter 22.51 Critical speed function, and
- set the critical speed ranges as in the figure below.

Settings and diagnostics

Parameters:

- Critical speeds: Parameters 22.01 Speed ref unlimited (page 266), 22.51 Critical speed function...22.57 Critical speed 3 high (page 273) and 22.87 Speed reference act 7 (page 276).
- Critical frequencies: Parameters 28.51 Critical frequency function...28.57 Critical frequency 3 high (page 297) and 28.96 Frequency ref act 7 (page 301).

Events: -

Speed controller autotune

The speed controller of the drive can be automatically adjusted using the autotune function. Autotuning is based on an estimation of the mechanical time constant (inertia) of the motor and machine.

The autotune routine will run the motor through a series of acceleration/deceleration cycles, the number of which can be adjusted by parameter 25.40. Higher values will produce more accurate results, especially if the difference between initial and maximum speeds is small.

The maximum torque reference used during autotuning will be the initial torque (that is, torque when the routine is activated) plus 25.38 , unless limited by the maximum torque limit (parameter group 30 Limits) or the nominal motor torque (99 Motor data). The calculated maximum speed during the routine is the initial speed (that is, speed when the routine is activated) +25.39 , unless limited by parameter 30.12 or 99.09.

The diagram below shows the behavior of speed and torque during the autotune routine. In this example, 25.40 is set to 2 .

Notes:

- If the drive cannot produce the requested braking power during the routine, the results will be based on the acceleration stages only, and not as accurate as with full braking power.
- The motor will exceed the calculated maximum speed slightly at the end of each acceleration stage.

Before activating the autotune routine

The prerequisites for performing the autotune routine are:

- The motor identification run (ID run) has been successfully completed
- Speed and torque limits (parameter group 30 Limits) have been set
- The drive has been started and is running in speed control mode.

After these conditions have been fulfilled, autotuning can be activated by parameter 25.33 (or the signal source selected by it).

Autotune modes

Autotuning can be performed in three different ways depending on the setting of parameter 25.34. The selections Smooth, Normal and Tight define how the drive torque reference should react to a speed reference step after tuning. The selection Smooth will produce a slow but robust response; Tight will produce a fast response
but possibly too high gain values for some applications. The figure below shows speed responses at a speed reference step (typically $1 . . .20 \%$).

Autotune results

At the end of a successful autotune routine, its results are automatically transferred into parameters

- 25.02 (proportional gain of the speed controller)
- 25.03 (integration time of the speed controller)
- 25.37 (mechanical time constant of the motor and machine).

Nevertheless, it is still possible to manually adjust the controller gain, integration time and derivation time.

The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller.

Warning indications

A warning message AF90, will be generated if the autotune routine does not complete successfully. See chapter Fault tracing (page 479) for further information.

Settings and diagnostics

Parameters groups: 25 Speed control (page 280), 30 Limits (page 301) and 99 Motor data (page 431).

Parameters: 25.02 Speed proportional gain (page 281), 25.03 Speed integration time (page 282), 25.33 Speed controller autotune...25.40 Autotune repeat times (page 285), 30.12 Maximum speed (page 303) and 99.09 Motor nominal speed (page 433).

Event: AF90 Speed controller autotuning (page 491).

User load curve

The User load curve provides a supervisory function that monitors an input signal as a function of frequency or speed, and load. It shows the status of the monitored signal and can give a warning or fault based on the violation of a user defined profile.

The user load curve consists of an overload and an underload curve, or just one of them. Each curve is formed by five points that represent the monitored signal as a function of frequency or speed.

In the example below, the user load curve is constructed from the motor nominal torque to which a 10% margin is added and subtracted. The margin curves define a
working envelope for the motor so that excursions outside the envelope can be supervised, timed and detected.

An overload warning and/or fault can be set to occur if the monitored signal stays continuously over the overload curve for a defined time. An underload warning and/or fault can be set to occur if the monitored signal stays continuously under the underload for a defined time.

Overload can be for example used to monitor for a saw blade hitting a knot or fan load profiles becoming too high.

Underload can be for example used to monitor for load dropping and breaking of conveyer belts or fan belts.

Settings and diagnostics

Parameter group: 37 User load curve (page 349).
Events: A6E6 ULC configuration (page 487), A8BE ULC overload warning (page 490), A8BF ULC underload warning (page 490), 8001 ULC underload fault (page 501), 8002 ULC overload fault page 501).

Control macros

Control macros are predefined parameter edits and I/O configurations. See chapter Control macros (page 77).

Process PID control

There are two built-in process PID controllers (PID set 1 and PID set 2) in the drive. The controller can be used to control process variables such as pressure or flow in the pipe or fluid level in the container.

In process PID control, a process reference (setpoint) is connected to the drive instead of a speed reference. An actual value (process feedback) is also brought back to the drive. The process PID control adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (setpoint). This means that user does not need to set a frequency/speed/torque reference to the drive but the drive adjust its operation according to the process PID.

The simplified block diagram below illustrates the process PID control. For more detailed block diagrams, see pages 563 and 564 .

The drive contains two complete sets of process PID controller settings that can be alternated whenever necessary; see parameter 40.57 PID set1/set2 selection.

Note: Process PID control is only available in external control; see section Local control vs. external control (page 107).

Quick configuration of the process PID controller

1. Activate the process PID controller: Menu - Primary settings - PID - PID controls
2. Select a feedback source: Menu - Primary settings - PID - Feedback
3. Select a setpoint source: Menu - Primary settings - PID - Setpoint
4. Set the gain, integration time, derivation time: Menu - Primary settings - PID Tuning
5. Set the PID output limits: Menu - Primary settings - PID - PID output
6. Select the PID controller output as the source of, for example, 22.11 Ext1 speed ref1: Menu - Primary settings - Start, stop, reference - Reference from

Sleep and boost functions for process PID control

The sleep function is suitable for PID control applications where the consumption varies, such as clean water pumping systems. When used, it stops the pump completely during low demand, instead of running the pump slowly below its efficient operating range. The following example visualizes the operation of the function.

Example: The drive controls a pressure boost pump. The water consumption falls at night. As a consequence, the process PID controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor would never stop rotating. The sleep function detects the slow rotation and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still monitoring the pressure. The pumping resumes when the pressure falls under the predefined minimum level and the wakeup delay has passed.

The user can extend the PID sleep time by the boost functionality. The boost functionality increases the process setpoint for a predetermined time before the drive enters the sleep mode.

Tracking

In tracking mode, the PID block output is set directly to the value of parameter 40.50 (or 41.50) Set 1 tracking ref selection. The internal I term of the PID controller is set so that no transient is allowed to pass on to the output, so when the tracking mode is left, normal process control operation can be resumed without a significant bump.

Settings and diagnostics

Menu - Primary settings - PID

Parameter: 96.04 Macro select (page 417) (macro selection).
Parameter groups: 40 Process PID set 1 (page 353) and 41 Process PID set 2 (page 369).

Events: -

PID trim function

The PID trim function is used to maintain the set tension either by trimming the drive main speed reference or torque reference (speed controller output).

\triangleWARNING: Make sure that the drive acceleration and deceleration time is set to 0 when using PID trim function. This is required to do quick tension control by speed correction.

PID trim is implemented as one of the Process PID functions (parameter groups 40 Process PID set 1 and 41 Process PID set 2). Both PID set 1 and PID set 2 can be used for this functionality.

The trimmed output is calculated from parameter 40.01 Process PID output actual or 40.03 Process PID setpoint actual. This is base on the selection in parameter 40.56

Set 1 trim source (for process PID set 1) or 41.56 Set 2 trim source (for process PID set 2). In most of the use cases, 40.01 Process PID output actual is used, that is 40.56 Set 1 trim source or 41.56 Set 2 trim source is set to PID output.

PID trim functionality in Variable Frequency Drives (VFD) is used in applications where tension control of the material is very essential, for example, in auxiliary drives in metal process industries, infeed and outfeed of rotogravure printing machines and surface winders.

You must link the trimmed output from PID to the speed chain manually if PID trimmed output is used for trimming speed. Set the below parameters as follows:

Parameter	Value
22.11 Ext1 speed ref1	Process speed reference given by 22.11 Ext1 speed ref1 source
22.12 Ext1 speed ref2	Other, 40.05 Process PID trim output act
22.13 Ext1 speed function	Add (ref1 + ref2)

Notes:

- The above settings are for EXT1 control location. Accordingly, you can set for EXT2 control location.
- The examples provided here are based on PID set 1. You can set the desired values for PID trim function's parameters to get the expected result.

The following PID trim modes are available:

- Direct
- Proportional
- Combined.

Direct

The direct mode is suitable where you need tension control at fixed rpm/line speed.
In this mode, the PID trimmed output (40.05 Process PID trim output act) is relative to the maximum speed (parameter 30.12 Maximum speed), torque (30.20 Maximum torque 1) or frequency (30.14 Maximum frequency). You make the selection with parameter 40.52 Set 1 trim selection.

The calculated trimmed output actual is the same throughout the speed range with respect to the stable PID output.

The 40.05 Process PID trim output act is calculated using the below formula:

$$
\operatorname{Par40.05}=\left(\frac{\operatorname{Par} 40.01}{100}\right) \times(\operatorname{Par} 30.12 \text { or } 30.20 \text { or } 30.14) \times \operatorname{Par} 40.55
$$

The below graph shows the PID trim output in direct mode throughout the speed range. A fixed trim speed reference is added throughout the speed range.

Note: In the above graph, it is assumed that the PID output is limited/stable at 100. This is for understanding purpose only. In real case scenarios, PID output can vary based on the setpoint and actual.

Example:

If,
parameter 40.52 Set 1 trim selection = Speed
parameter 40.56 Set 1 trim source $=$ PID output
parameter 30.12 Maximum speed = 1500 rpm
parameter 40.01 Process PID output actual $=100$ (limited to 100)
parameter 40.55 Set 1 trim adjust $=0.5$
then

$$
\begin{aligned}
\operatorname{Par} 40.05 & =\left(\frac{100}{100}\right) \times 1500 \times 0.5 \\
\operatorname{Par40.05} & =750
\end{aligned}
$$

Proportional

The proportional mode is suitable for applications where tension control is required throughout the speed range but not near zero speed.

In this mode, the PID trim output (40.05 Process PID trim output act) is relative to the reference selected by parameter 40.53 Set 1 trimmed ref pointer and with 40.01 Process PID output actual or 40.03 Process PID setpoint actual.

It is recommended that the speed reference selected in 40.53 Set 1 trimmed ref pointer and the reference source selected in 22.11 Ext1 speed ref1 are same. This is required to make the proportional mode active.

In most of the use cases, the process speed reference is connected to 40.53 Set 1 trimmed ref pointer. For example, if EXT1 control mode is used and the reference
source is Al scaled, then 22.11 Ext1 speed ref1 and 40.53 Set 1 trimmed ref pointer should be configured to Al1 scaled.

The 40.05 Process PID trim output act calculated using the below formula:
Par40.05 $=\left(\frac{\text { Par40.01 }}{100}\right) \times \operatorname{Par} 40.53 \times$ Par40.55
The below graph shows the PID trim output in proportional mode throughout the speed range. Here, the trimmed output is directly proportional to the value of parameter 40.53 Set 1 trimmed ref pointer.

Note: In the above graph, it is assumed that the PID output is limited/stable at 100. This is for understanding purpose only. In real case scenario, PID output can vary based on the setpoint and actual.

Example:

If,
parameter 40.52 Set 1 trim selection $=$ Speed
parameter 40.56 Set 1 trim source = PID output
parameter 40.53 Set 1 trimmed ref pointer = Al1 scaled
parameter 22.11 Ext1 speed ref1 = Al1 scaled
parameter 12.20 Al1 scaled at Al1 max = 1500
parameter 12.12 Al1 scaled value $=750$ (Al1 actual scaled value)
parameter 40.01 Process PID output actual $=100$ (limited to 100)
parameter 40.55 Set 1 trim adjust $=0.5$
then
Par40.05 $=\left(\frac{100}{100}\right) \times 750 \times 0.5$
Par40.05 $=375$

Combined

The combined mode is suitable for applications where you need to maintain tension from zero speed to maximum speed.

The combined mode is a combination of direct and proportional mode. Here, the trim for zero speed is defined by 40.54 Set 1 trim mix and the trim for speed greater than zero speed is defined by 40.55 Set 1 trim adjust. The trim value is directly proportional to value of 40.53 Set 1 trimmed ref pointer.

The process speed reference is connected in 40.53 Set 1 trimmed ref pointer. For example, if EXT1 control mode is used and the reference source is Al scaled, then 22.11 Ext1 speed ref1 and 40.53 Set 1 trimmed ref pointer should be configured to Al1 scaled.

The 40.05 Process PID trim output act is calculated using the below formula:

$$
\operatorname{Par} 40.05=\{(\operatorname{Par} 30.12 \times \operatorname{Par} 40.54)+[(1-\operatorname{Par} 40.54) \times \operatorname{Par} 40.53]\} \times \operatorname{Par} 40.55
$$

The below graph shows the trim increase in the combined mode.

Note: In the above graph, it is assumed that the PID output is limited/stable at 100. This is for understanding purpose only. In real case scenario, PID output can vary based on the setpoint and actual.

Example:

If,

parameter 40.52 Set 1 trim selection = Speed parameter 40.56 Set 1 trim source = PID output
parameter 30.12 Maximum speed $=1500 \mathrm{rpm}$
parameter 40.53 Set 1 trimmed ref pointer = Al1 scaled
parameter 22.11 Ext1 speed ref1 = Al1 scaled
parameter 12.20 Al1 scaled at Al1 max = 1500
parameter 12.12 Al1 scaled value = 750 (Al1 actual scaled value)
parameter 40.01 Process PID output actual $=100$ (limited to 100)
parameter 40.54 Set 1 trim mix $=0.1$
parameter 40.55 Set 1 trim adjust $=0.5$
then
If 40.53 Set 1 trimmed ref pointer is 0
Par40.05 $=\left(\frac{100}{100}\right) \times\{(1500 \times 0.1)+[(1-0.1) \times 0]\} \times 1$
Par40.05 = 150
If 40.53 Set 1 trimmed ref pointeris 750
Par40.05 $=\left(\frac{100}{100}\right) \times\{(1500 \times 0.1)+[(1-0.1) \times 750]\} \times 1$
Par40.05 = 825
If 40.53 Set 1 trimmed ref pointer is 1500
$\operatorname{Par40.05}=\left(\frac{100}{100}\right) \times\{(1500 \times 0.1)+[(1-0.1) \times 1500]\} \times 1$
Par40.05 = 1500

PID trim auto connection

PID trim auto connection (40.54 Set 1 trim mix) enables the connection of PID trim output actual (40.05 Process PID trim output act)) to the respective speed, torque or frequency reference chains. You can use parameter 40.52 Set 1 trim selection (for PID set 1) or 41.52 Set 2 trim selection (for PID set 2) and select the respective trim (speed, torque or frequency).

The motor control mode (99.04 Motor control mode) also impacts the PID trim output actual (40.05 Process PID trim output act) added to the speed, torque or frequency reference chains. In scalar control mode, the speed trim and torque trim values are zero and in vector control mode, the frequency trim value is zero.

See the control chain diagram on page 568.
Note: If the parameter 40.54 Set 1 trim mix is disabled and the drive stops through Ramp stop (Off1) or Emergency ramp stop (Off3) emergency stop mode (21.04

Emergency stop mode), the PID trim output actual (40.05 Process PID trim output $a c t$) is not added to the frequency reference chain during the drive deceleration condition.

Speed trim connection

Speed trim is added to parameter 23.02 Speed ref ramp output. Parameter 24.01 Used speed reference displays the final speed reference after the addition of speed trim.

Torque trim connection

Torque trim is added to parameter 26.75 Torque reference act 5. Parameter 26.76 Torque reference act 6 displays the final torque reference after the addition of torque trim.

Frequency trim connection

Frequency trim is added to parameter 28.02 Frequency ref ramp output and generates the final frequency after the trim addition. At present, no parameter displays the final frequency reference after the addition of frequency trim.

Settings and diagnostics

Parameter groups: 40 Process PID set 1, especially parameters $40.51 \ldots 40.56$ (page 364) and 41 Process PID set 2 , especially parameters $41.51 \ldots 41.56$ (page 370).

Events: -

Pump and fan control (PFC)

The Pump and fan control (PFC) is used in pump or fan systems consisting of one drive and multiple pumps or fans. The drive controls the speed of one of the pumps/fans and in addition connects (and disconnects) the other pumps/fans directly to the supply network through contactors.

The PFC control logic switches auxiliary motors on and off as required by the capacity changes of the process. In a pump application for example, the drive controls the motor of the first pump, varying the motor speed to control the output of the pump. This pump is the speed regulated pump. When the demand (represented by the process PID reference) exceeds the capacity of the first pump (a user defined speed/frequency limit), the PFC logic automatically starts an auxiliary pump. The logic also reduces the speed of the first pump, controlled by the drive, to account for the addition to the total system output by the auxiliary pump. Then, as before, the PID controller adjusts the speed/frequency of the first pump in such a way that the system output meets the process needs. If the demand continues to increase, the PFC logic adds further auxiliary pumps, in a similar manner as just described.

As the demand drops, making the speed of the first pump fall below a minimum limit (user defined as a speed/frequency limit), the PFC logic automatically stops an auxiliary pump. The PFC logic also increases the speed of the drive controlled pump to account for the missing output of the stopped auxiliary pump.
The Pump and fan control (PFC) is supported in external control location EXT2 only.
Example: Three-pump constant pressure water supply application

Flow consumption vs. pump status			
Consumption	Pump 1	Pump 2	Pump 3
Low	\downarrow	VSD	Off
High	VSD	DOL	Off
\downarrow	VSD	Off	
	Vow	VSD	DOL
	VSD	Off	Off
			Off

VSD = Controlled by drive, tuning the output speed according to PID control.
DOL $=$ Direct On Line. Pump is running at fixed motor nominal speed.
Off = Off-line. Pump stops.

Soft pump and fan control (SPFC)

The Soft pump and fan control (SPFC) logic is a variant of the PFC logic for pump and fan alternation applications where lower pressure peaks are desirable when a new auxiliary motor is to be started. The SPFC logic is an easy way to implement soft starting of direct on line (auxiliary) motors.

The main difference between traditional PFC and SPFC logic is how the SPFC logic connects auxiliary motors on-line. When the criteria for starting a new motor is fulfilled (see above) the SPFC logic connects the drive controlled motor to the supply network in a flying start, that is, while the motor is still coasting. The drive then connects to the next pump/fan unit to be started and starts controlling the speed of that one, while the previously controlled unit is now connected directly on line through a contactor.

Further (auxiliary) motors are started in a similar manner. The motor stopping routine is the same as for the normal PFC routine.

In some cases SPFC makes it possible to soften the start-up current while connecting auxiliary motors on-line. Lower pressure peaks on the pipelines and pumps may be achieved as a result.

Example: Three-pump constant pressure water supply application

Pump 1 is connected to Motor 1.
Pump 2 is connected to Motor 2.
Pump 3 is connected to Motor 3.

Flow consumption and pump status			
Consumption	Pump 1	Pump 2	Pump 3
Low	VSD	Off	Off
\downarrow	DOL	VSD	Off
High	DOL	DOL	VSD
\downarrow	DOL	Off	VSD
Low	Off	Off	VSD
\downarrow	VSD	Off	DOL
High	DOL	VSD	DOL
\downarrow	DOL	VSD	Off
Low	Off	VSD	Off
\downarrow	VSD	DOL	Off
High	DOL	DOL	VSD

VSD = Controlled by drive, tuning the output speed according to PID control.
DOL $=$ Direct On Line. Pump is running at fixed motor nominal speed.
Off = Off-line. Pump stops.

Autochange

Automatic rotation of the start order, or Autochange functionality, serves two main purposes in many PFC type setups. One is to keep the run times of the pumps/fans equal over time to even their wear. The other is to prevent any pump/fan from standing still for too long, which would clog up the unit. In some cases it is desirable to rotate the start order only when all units are stopped, for example to minimize the impact on the process.

The Autochange can also be triggered by the Timed function (see page 156).
There are three modes of autochange according to what kind of PFC and SPFC together with auxiliary circuit are implemented.

1. Autochange PFC with auxiliary motors only

Example: Three-pump constant pressure water supply application
Two pumps fulfill the flow consumption for long term running, and the third pump is reserved for shifting. In this mode, only two auxiliary motors, pump 2 and pump 3, shift working.

Flow consumption and pump status			
Consumption	Pump 1	Pump 2	Pump 3
Low	VSD	Off	Off
Normal	VSD	DOL	Off
\downarrow	VSD	Off	DOL
\downarrow	VSD	DOL	Off
Normal	VSD	Off	DOL

VSD = Controlled by drive, tuning the output speed according to PID control.
DOL $=$ Direct On Line. Pump is running at fixed motor nominal speed.
Off = Off-line. Pump stops.

2. Autochange PFC with all motors

Example: Three-pump constant pressure water supply application
Two pumps fulfill the flow consumption for long term running, and the third pump is reserved for shifting. Because all motors will be shifted for autochange routine, special auxiliary circuit is needed, which is the same as for the SPFC system.

In this mode, the VSD motor will move to the next pump one by one, but the auxiliary motor will always be put on-line in DOL mode. However, three pumps are shifted overall.

Main supply

Pump 1 is connected to Motor 1.
Pump 2 is connected to Motor 2.
Pump 3 is connected to Motor 3.

Flow consumption and pump status				
Consumption	Pump 1	Pump 2	Pump 3	
Low	VSD	Off	Off	
	Normal	VSD	DOL	
	Off	VSD	Off	
DOL	Off	DOL		
	VSD	DOL	Off	

VSD = Controlled by drive, tuning the output speed according to PID control.
DOL $=$ Direct On Line. Pump is running at fixed motor nominal speed.
Off = Off-line. Pump stops.

3. Autochange with SPFC

Auxiliary motor is meaningless in SPFC. So it does not matter if you select All motors or Aux motor only.

Example: Three-pump constant pressure water supply application
Two pumps fulfills the flow consumption for long term running, and the third pump is reserved for shifting.

SPFC system supports autochange naturally. No extra component is needed as long as SPFC is already working there. In this mode, all the pumps are always started by the drive as they are in SPFC normal operation.

Main supply

Pump 1 is connected to Motor 1.
Pump 2 is connected to Motor 2.
Pump 3 is connected to Motor 3.

Flow consumption and pump status				
Consumption	Pump 1	Pump 2	Pump 3	
Low	VSD	Off	Off	
	Normal			
	DOL	VSD	Off	
Off	DOL	VSD		
	Vormal	VSD	Off	
	DOL	VSD	OOL	

VSD = Controlled by drive, tuning the output speed according to PID control.
DOL $=$ Direct On Line. Pump is running at fixed motor nominal speed.
Off = Off-line. Pump stops.

Interlock

There is an option to define interlock signals for each motor in the PFC system. When the interlock signal of a motor is Available, the motor participates in the PFC starting sequence. If the signal is Interlocked, the motor is excluded. This feature can be used for informing the PFC logic that a motor is not available (for example due to maintenance or manual direct-on-line starting).

Settings and diagnostics

Parameter: 96.04 Macro select (page 417) (macro selection).
Parameter groups: 10 Standard DI, RO (page 216), 40 Process PID set 1 (page 353), 76 PFC configuration (page 403) and 77 PFC maintenance and monitoring (page 411).

Events: D501 No more available PFC motors (page 492), D502 All motors interlocked (page 492), D503 VSD controlled PFC motor interlocked (page 492).

Timed functions

A Timer can be active based on time of the day, day of the week and season of the year. In addition to these time related parameters, the Timer activation can be influenced by so called exceptional days (configurable as holiday or workday). A Timer can be set to be active or inactive during the exceptional days.

Several Timers can be connected to a Timed function with the OR function. Thus if any of the Timers connected to a Timed function is active, the Timed function is also active. Timed function is then in turn controlling normal drive functions like starting the drive, choosing the right speed or right setpoint for the PID loop controller.

In many cases where a fan or pump is controlled with a Timed function, it is often required that there is a possibility to override the time program for a short while. The overriding functionality is called Boost. The Boost is directly affecting selected Timed function(s) and switches it (them) on for a predefined time. The Boost mode is typically activated through a digital input and its operation time is set in parameters.

A diagram illustrating the relations of the Timed functions entities is shown below.

Settings and diagnostics
Parameter group: 34 Timed functions (page 327).
Events: -

Motor potentiometer

The motor potentiometer is, in effect, a counter whose value can be adjusted up and down using two digital signals selected by parameters 22.73 Motor potentiometer up source and 22.74 Motor potentiometer down source.

When enabled by 22.71 Motor potentiometer function, the motor potentiometer assumes the value set by 22.72 Motor potentiometer initial value. Depending on the mode selected in 22.71, the motor potentiometer value is either retained or reset over a power cycle.

The change rate is defined in 22.75 Motor potentiometer ramp time as the time it would take for the value to change from the minimum (22.76 Motor potentiometer min value) to the maximum (22.77 Motor potentiometer max value) or vice versa. If the up and down signals are simultaneously on, the motor potentiometer value does not change.

The output of the function is shown by 22.80 Motor potentiometer ref act, which can directly be set as the reference source in the main selector parameters, or used as an input by other source selector parameters, both in scalar and vector control.

The following example shows the behavior of the motor potentiometer value.

Parameters 22.73 Motor potentiometer up source and 22.74 Motor potentiometer down source control speed or frequency from zero to maximum speed or frequency. The running direction can be changed with parameter 20.04 Ext1 in2 source. See the following example.

Settings and diagnostics

Parameters: 20.04 Ext2 in2 source (page 249) and 22.71 Motor potentiometer function ...22.80 Motor potentiometer ref act (page 274).

Events: -

Mechanical brake control

A mechanical brake can be used for holding the motor and driven machinery at zero speed when the drive is stopped, or not powered. The brake control logic observes the settings of parameter group 44 Mechanical brake control as well as several external signals, and moves between the states presented in the diagram on page 153. The tables below the state diagram detail the states and transitions. The timing diagram on page 154 shows an example of a close-open-close sequence.

Inputs of the brake control logic

The start command of the drive (bit 5 of 06.16 Drive status word 1) is the main control source of the brake control logic.

Outputs of the brake control logic

The mechanical brake is to be controlled by bit 0 of parameter 44.01 Brake control status. This bit should be selected as the source of a relay output (or a digital input/output in output mode) which is then wired to the brake actuator through a relay. See the wiring example on page 155.

The brake control logic, in various states, will request the drive control logic to hold the motor or ramp down the speed. These requests are visible in parameter 44.01 Brake control status.

Settings and diagnostics
Parameter group: 44 Mechanical brake control (page 373).
Parameters: 06.16 Drive status word 1 (page 210) and 44.01 Brake control status (page 373).

Event: A7A2 Mechanical brake opening failed (page 488).

Brake state diagram

State descriptions

State name	Description
BRAKE DISABLED	Brake control is disabled (parameter 44.06 Brake control enable $=0$, and 44.01 Brake control status b4 = 0). The open signal is active (44.01 Brake control status b0 = 1).
BRAKE OPENING:	Brak has been requested to open. (44.01 Brake control status b2 = 1). Open signal has been activated (44.01 Brake control status b0 is set). The load is held in place by the speed control of the drive until 44.08 Brake open delay elapses.
BRAKE OPEN	The brake is open (44.01 Brake control status b0 = 1). Hold request is removed (44.01 Brake control status b2 = 0), and the drive is allowed to follow the reference.
BRAKE CLOSING:	Brake has been requested to close. The drive logic is requested to ramp down the speed to a stop (44.01 Brake control status b3 = 1). The open signal is kept active (44.01 Brake control status b0 = 1). The brake logic will remain in this state until the motor speed is below 44.14 Brake close level.
BRAKE CLOSING WAIT	

State change conditions (n)

1 Brake control disabled (parameter 44.06 Brake control enable $\rightarrow 0$).
2 06.11 Main status word, bit $2=0$.
3 Brake has been requested to open.
4 44.08 Brake open delay has elapsed.
5 Brake has been requested to close.
6 Motor speed is below closing speed 44.14 Brake close level.
7 44.13 Brake close delay has elapsed.
8 Brake has been requested to open.
9 Brake control enabled (parameter 44.06 Brake control enable $\rightarrow 1$).

Timing diagram

The simplified timing diagram below illustrates the operation of the brake control function. Refer to the state diagram above.

Wiring example

The figure below shows a brake control wiring example. The brake control hardware and wiring is to be sourced and installed by the customer.

\triangleWARNING! Make sure that the machinery into which the drive with brake control function is integrated fulfils the personnel safety regulations. Note that the frequency converter (a Complete Drive Module or a Basic Drive Module, as defined in IEC/EN 61800-2), is not considered as a safety device mentioned in the European Machinery Directive and related harmonised standards. Thus, the personnel safety of the complete machinery must not be based on a specific frequency converter feature (such as the brake control function), but it has to be implemented as defined in the application specific regulations.

The brake is controlled by bit 0 of parameter 44.01 Brake control status. In this example, parameter 10.24 RO1 source is set to Brake command (ie. bit 0 of 44.01 Brake control status.

Motor control

Motor types

The drive supports asynchronous AC induction, permanent magnet (PM) and synchronous reluctance motors (SynRM).

Motor identification

The performance of vector control is based on an accurate motor model determined during the motor start-up.

A motor Identification magnetization is automatically performed the first time the start command is given. During this first start-up, the motor is magnetized at zero speed for several seconds and the motor and motor cable resistance are measured to allow the motor model to be created. This identification method is suitable for most applications.

In demanding applications a separate Identification run (ID run) can be performed.

Settings and diagnostics

Parameter: 99.13 ID run requested (page 434).
Events: AFF6 Identification run (page 492) and FF61 ID run (page 503).

Scalar motor control

Scalar motor control is the default motor control method. In scalar control mode, the drive is controlled with a frequency reference. However, the excellent performance of vector control is not achieved in scalar control.

ABB recommends to activate scalar motor control mode in the following situations:

- If the exact nominal motor values are not available or the drive needs to run different motor after the commissioning phase
- If a short commissioning time is needed or no ID run is wanted
- In multimotor systems: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after motor identification (ID run)
- If the nominal current of the motor is less than $1 / 6$ of the nominal output current of the drive
- If the drive is used without a motor connected (for example, for test purposes)
- If the drive runs a medium-voltage motor through a step-up transformer.
- If the drive is equipped with a sine filter.

In scalar control, some standard features are not available.
See also section Operating modes of the drive (page 112).

IR compensation for scalar motor control

IR compensation (also known as voltage boost) is available only when the motor control mode is scalar. When IR compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR compensation is useful in applications, such as positive displacement pumps, that require a high break-away torque.

In vector control, no IR compensation is
 possible or needed as it is applied automatically.

Settings and diagnostics

Menu - Primary settings - Motor - IR compensation

Parameter group: 28 Frequency reference chain (page 290).
Parameters: 97.13 IR compensation (page 428) and 99.04 Motor control mode (page 431).

Events: -

Vector motor control

Vector control is the motor control mode that is intended for applications where high control accuracy is needed. It offers better control over the whole speed range, in particular in applications where slow speed with high torque is needed. It requires an identification run at startup. Vector control cannot be used in all applications, for example, when sine filters are being used or there are multiple motors connected to single drive.

The switching of the output semiconductors is controlled to achieve the required stator flux and motor torque. The reference value for the torque controller comes from the speed controller or directly from an external torque reference source.

Stator flux is calculated by integrating the motor voltage in vector space. Rotor flux can be calculated from stator flux and the motor model. Motor torque is produced by controlling current 90 degrees from the rotor flux. By utilizing the identified motor model, the rotor flux estimate is improved. Actual motor shaft speed is not needed for the motor control.

Vector control is required when using synchronous reluctance motors (SynRM).
See also section Speed compensated stop (page 168).

Settings and diagnostics

Menu - Primary settings - Motor - Control mode

Parameters: 99.04 Motor control mode (page 431) and 99.13 ID run requested (page 434).

Events:

Speed control performance figures

The table below shows typical performance figures for speed control.

Settings and diagnostics
Parameter group: 25 Speed control (page 280).
Events: -

Torque control performance figures

The drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control.

Power loss ride-through

See section Undervoltage control (power loss ride-through) on page 169.

U/f ratio

The U/f function is only available in scalar motor control mode, which uses frequency control.

The function has two modes: linear and squared.
In linear mode, the ratio of voltage to frequency is constant below the field weakening point. This is used in constant torque applications where it may be necessary to produce torque at or near the rated torque of the motor throughout the frequency range.

In squared mode (default), the ratio of the voltage to frequency increases as the square of the frequency below the field weakening point. This is typically used in centrifugal pump or fan applications. For these applications, the torque required follows the square relationship with frequency. Therefore, if the voltage is varied using the square relationship, the motor operates at improved efficiency and lower noise levels in these applications.

The U/f function cannot be used with energy optimization; if parameter 45.11 Energy optimizer is set to Enable, parameter 97.20 U/F ratio is ignored.

Settings and diagnostics

Menu - Primary settings - Motor - U/f ratio

Parameters: 45.11 Energy optimizer (page 377) and 97.20 U/F ratio (page 428).

Events: -

Flux braking

The drive can provide greater deceleration by raising the level of magnetization in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy.

The drive monitors the motor status continuously, also during flux braking. Therefore, flux braking can be used both for stopping the motor and for changing the speed. The other benefits of flux braking are:

- The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it can start the braking.
- The cooling of the induction motor is efficient. The stator current of the motor increases during flux braking, not the rotor current. The stator cools much more efficiently than the rotor.
- Flux braking can be used with induction motors and permanent magnet synchronous motors.

Two braking power levels are available:

- Moderate braking provides faster deceleration compared to a situation where flux braking is disabled. The flux level of the motor is limited to prevent excessive heating of the motor.
- Full braking exploits almost all available current to convert the mechanical braking energy to motor thermal energy. Braking time is shorter compared to moderate braking. In cyclic use, motor heating may be significant.

WARNING: The motor needs to be rated to absorb the thermal energy generated by flux braking.

Settings

Menu - Primary settings - Motor - Flux braking

Parameter: 97.05 Flux braking (page 426).
Events: -

DC magnetization

The drive has different magnetization functions for different phases of motor start/rotation/stop: pre-magnetization, DC hold, post-magnetization and pre-heating (motor heating).

Pre-magnetization

Pre-magnetization refers to DC magnetization of the motor before start. Depending on the selected start mode (21.01 Start mode or 21.19 Scalar start mode), premagnetization can be applied to guarantee the highest possible breakaway torque, up to 200% of the nominal torque of the motor. By adjusting the pre-magnetization time (21.02 Magnetization time), it is possible to synchronize the motor start and, for example, the release of a mechanical brake.

Settings and diagnostics
Parameters: 21.01 Start mode (page 257), 21.02 Magnetization time (page 258) and 21.19 Scalar start mode (page 262).

Events: -

DC hold

The function makes it possible to lock the rotor at (near) zero speed in the middle of normal operation. DC hold is activated by parameter 21.08 DC current control. When both the reference and motor speed drop below a certain level (parameter 21.09 DC hold speed), the drive will stop generating sinusoidal current and start to inject DC into the motor. The current is set by parameter 21.10 DC current reference. When the reference exceeds parameter 21.09 DC hold speed, normal drive operation continues.

Settings and diagnostics

Parameters: 21.08 DC current control (page 261) and 21.09 DC hold speed (page 261).

Events:

Post-magnetization

The function keeps the motor magnetized for a certain period (parameter 21.11 Post magnetization time) after stopping. This is to prevent the machinery from moving under load, for example before a mechanical brake can be applied. Postmagnetization is activated by parameter 21.08 DC current control. The magnetization current is set by parameter 21.10 DC current reference.

Note: Post-magnetization is only available when ramp stop is selected (see parameter 21.03 Stop mode).

Settings and diagnostics
Parameters: 21.03 Stop mode (page 258), 21.08 DC current control (page 261) and 21.11 Post magnetization time (page 261).

Events: -

Pre-heating (Motor heating)

The pre-heating function keeps the motor warm and prevents condensation inside the motor by feeding it with DC current when the drive has been stopped. The heating can only be on when the drive is in the stopped state, and starting the drive stops the heating.

When pre-heating is activated and the stop command is given, pre-heating starts immediately if the drive is running below the zero speed limit (see bit 0 in parameter 06.19 Speed control status word). If the drive is running above the zero speed limit, pre-heating is delayed by the time defined by parameter 21.15 Pre-heating time delay to prevent excessive current.

The function can be defined to be always active when the drive is stopped or it can be activated by a digital input, fieldbus, timed function or supervision function. For example, with the help of signal supervision function, the heating can be activated by a thermal measurement signal from the motor.

The pre-heating current fed to the motor can be defined as $0 \ldots 30 \%$ of the nominal motor current.

When the pre-heating is active, an icon is shown on the status bar to indicate that current is being fed to the motor, see page 44.

Notes:

- In applications where the motor keeps rotating for a long time after the modulation is stopped, ABB recommends to use ramp stop with pre-heating to prevent a sudden pull at the rotor when the pre-heating is activated.
- The heating function requires that the STO circuit is closed or not triggered open.
- The heating function requires that the drive is not faulted.
- The heating function is allowed even if Enable to rotate signal is missing.
- The heating function is allowed even if Start enable signal is missing.
- Pre-heating uses DC hold to produce current.

Settings and diagnostics

Menu - Primary settings - Motor - Pre-heating

Parameters: 21.14 Pre-heating input source (page 261), 21.15 Pre-heating time delay (page 262) and 21.16 Pre-heating current (page 262).

Events: -

Energy optimization

The function optimizes the motor flux so that total energy consumption and motor noise level are reduced when the drive operates below the nominal load. The total efficiency (motor and drive) can be improved by $1 \ldots .20 \%$ depending on load torque and speed.

Note: With permanent magnet and synchronous reluctance motors, energy optimization is always enabled.

Settings and diagnostics

Menu - Energy efficiency

Parameter: 45.11 Energy optimizer (page 377).
Events: -

Switching frequency

The drive has two switching frequencies: reference switching frequency and minimum switching frequency. The drive tries to keep the highest allowed switching frequency (= reference switching frequency) if thermally possible, and then adjusts dynamically between the reference and minimum switching frequencies depending on the drive temperature. When the drive reaches the minimum switching frequency (= lowest allowed switching frequency), it starts to limit output current as the heating up continues.

For derating, see chapter Technical data, section Switching frequency derating in the Hardware manual of the drive.

Example 1: If you need to fix the switching frequency to a certain value as with some external filters, for example, with EMC C1 or sine filters (see the Hardware manual of the drive), set both the reference and the minimum switching frequency to this value and the drive will retain this switching frequency.

Example 2: If the reference switching frequency is set to 12 kHz and the minimum switching frequency is set to the smallest available value, the drive maintains the highest possible switching frequency to reduce motor noise and only when the drive heats it will decrease the switching frequency. This is useful, for example, in applications where low noise is necessary but higher noise can be tolerated when the full output current is needed.

Settings and diagnostics

Parameters: 97.01 Switching frequency reference and 97.02 Minimum switching frequency (page 412).

Events: -

Rush control

In torque control, the motor could potentially rush if the load were suddenly lost. The control program has a rush control function that decreases the torque reference whenever the motor speed exceeds 30.11 Minimum speed or 30.12 Maximum speed.

The function is based on a PI controller. The proportional gain and integration time can be defined by parameters. Setting these to zero disables rush control.

Settings and diagnostics

Parameters: 25.02 Speed proportional gain (page 281), 25.03 Speed integration time (page 281), 30.11 Minimum speed (page 303), 30.12 Maximum speed (page 303) and 31.30 Overspeed trip margin (page 307).

Events: -

Jogging

The jogging function enables the use of a momentary switch to briefly rotate the motor. The jogging function is typically used during servicing or commissioning to control the machinery locally.

Two jogging functions (1 and 2) are available, each with their own activation sources and references. The signal sources are selected by parameters 20.26 Jogging 1 start source and 20.27 Jogging 2 start source (Menu - Primary settings - Start, stop, reference - Jogging). When jogging is activated, the drive starts and accelerates to the defined jogging speed (22.42 Jogging 1 ref or 22.43 Jogging 2 ref) along the defined jogging acceleration ramp (23.20 Acc time jogging). After the activation signal switches off, the drive decelerates to a stop along the defined jogging deceleration ramp (23.21 Dec time jogging).

The figure and table below provide an example of how the drive operates during jogging. In the example, the ramp stop mode is used (see parameter 21.03 Stop mode).

Jog amd $=$ State of source set by 20.26 Jogging 1 start source or 20.27 Jogging 2 start source
 Jog $=\quad$ State of source set by 20.25 Jogging enable
 Start cml = State of drive start command.

Phase	Jog cod	Jog	Start dmd	Description
$1-2$	1	1	0	Drive accelerates to the jogging speed along the acceleration ramp of the jogging function.
$2-3$	1	1	0	Drive follows the jog reference.
$3-4$	0	1	0	Drive decelerates to zero speed along the deceleration ramp of the jogging function.
$4-5$	0	1	0	Drive is stopped.
$5-6$	1	1	0	Drive accelerates to the jogging speed along the acceleration ramp of the jogging function.
$6-7$	1	1	0	Drive follows the jog reference.
$7-8$	0	1	0	Drive decelerates to zero speed along the deceleration ramp of the jogging function.
$8-9$	0	$1->0$	0	Drive is stopped. As long as the jog signal is on, start commands are ignored. After jog switches off, a fresh start command is required.
$9-10$	x	0	1	Drive accelerates to the speed reference along the selected acceleration ramp (parameters $23.11 . . .23 .15)$.
$10-11$	x	0	1	Drive follows the speed reference.
$11-12$	x	0	0	Drive decelerates to zero speed along the selected deceleration ramp (parameters $23.11 . . .23 .15$).

Phase	Jog cmd	Jog	Start cmd	Description
$12-13$	x	0	0	Drive is stopped.
$13-14$	x	0	1	Drive accelerates to the speed reference along the selected acceleration ramp (parameters 23.11...23.15).
$14-15$	x	$0->1$	1	Drive follows the speed reference. As long as the start command is on, the jog signal is ignored. If the jog signal is on when the start command switches off, jogging is enabled immediately.
$15-16$	$0->1$	1	0	Start command switches off. The drive starts to decelerate along the selected deceleration ramp (parameters 23.11...23.15). When the jog command switches on, the decelerating drive adopts the deceleration ramp of the jogging function.
$16-17$	1	1	0	Drive follows the jog reference.
$17-18$	0	$1->0$	0	Drive decelerates to zero speed along the deceleration ramp of the jogging function.

See also the block diagram on page 556.

Notes:

- Jogging is not available when the drive is in local control.
- Jogging cannot be enabled when the drive start command is on, or the drive started when jogging is disabled. Starting the drive after the jog switches off requires a fresh start command.

WARNING! If jogging is enabled and activated while the start command is on, jogging will activate as soon as the start command switches off.

- If both jogging functions are activated, the one that was activated first has priority.
- Jogging uses vector control.
- The inching functions activated through fieldbus (see 06.01 Main control word, bits $8 \ldots 9$) use the references and ramp times defined for jogging, but do not require the jog signal.

Settings and diagnostics

Menu - Primary settings - Start, stop, reference - Jogging

Parameters: 20.25 Jogging enable...20.27 Jogging 2 start source (page 255), 22.42 Jogging 1 ref...22.43 Jogging 2 ref (page 273) and 23.20 Acc time jogging...23.21 Dec time jogging (page 277).

Events: -

Speed compensated stop

Speed compensation stop is available for example for applications where a conveyer needs to travel a certain distance after receiving the stop command. At maximum speed, the motor is stopped normally along the defined deceleration ramp, after the application of a user defined delay to adjust the distance traveled. Below maximum speed, stop is delayed still more by running the drive at current speed before the motor is ramped to a stop. As shown in the figure, the distance traveled after the stop command is the same in both cases, that is, area $A+$ area B equals area C.

Speed compensation does not take into account shape times (parameters 23.32 Shape time 1 and 23.33 Shape time 2). Positive shape times lengthen the distance traveled.

Speed compensation can be restricted to forward or reverse rotating direction.
Speed compensation is supported in both vector and scalar motor control.

Settings and diagnostics

Parameters: 21.30 Speed compensated stop mode...21.32 Speed comp stop threshold (page 265).

Events: -

DC voltage control

Overvoltage control

Overvoltage control of the intermediate DC link is typically needed when the motor is in generating mode. The motor can generate when it decelerates or when the load overhauls the motor shaft, causing the shaft to turn faster than the applied speed or frequency. To prevent the DC voltage from exceeding the overvoltage control limit, the overvoltage controller automatically decreases the generating torque when the limit is reached. The overvoltage controller also increases any programmed deceleration times if the limit is reached; to achieve shorter deceleration times, a brake chopper and resistor may be required.

See also section Voltage control and trip limits on page 172.
Settings and diagnostics
Parameter: 30.30 Overvoltage control (page 307).
Events: A3A1 DC link overvoltage (page 483) and 3210 DC link overvoltage (page 494.

Undervoltage control (power loss ride-through)

If the incoming supply voltage is cut off, the drive will continue to operate by utilizing the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue operation after the break if the main contactor (if present) remained closed.

See also section Voltage control and trip limits on page 172.

Note: Units equipped with a main contactor must be equipped with a hold circuit (for example, UPS) to keep the contactor control circuit closed during a short supply break.

Implementing the undervoltage control (power loss ride-through)

Implement the undervoltage control function as follows:

- Check that the undervoltage control function of the drive is enabled with parameter 30.31 Undervoltage control.
- Parameter 21.01 Start mode must be set to Automatic (in vector mode) or parameter 21.19 Scalar start mode to Automatic (in scalar mode) to make flying start (starting into a rotating motor) possible.

If the installation is equipped with a main contactor, prevent its tripping at the input power break. For example, use a time delay relay (hold) in the contactor control circuit.

WARNING! Make sure that the flying restart of the motor will not cause any danger. If you are in doubt, do not implement the undervoltage control function.

Automatic restart

It is possible to restart the drive automatically after a short (max. 10 seconds) power supply failure by using the Automatic restart function, provided that the drive is allowed to run for 10 seconds without the cooling fans operating.

When enabled, the function takes the following actions upon a supply failure to a successful restart:

- The undervoltage fault is suppressed (but a warning is generated).
- Modulation and cooling is stopped to conserve any remaining energy.
- DC circuit pre-charging is enabled.

If the DC voltage is restored before the expiration of the period defined by parameter 21.18 Auto restart time and the start signal is still on, normal operation will continue. However, if the DC voltage remains too low at that point, the drive trips on a fault, 3220 DC link undervoltage.

If parameter 21.34 Force auto restart is set to Enable, the drive never trips on the undervoltage fault and the start signal is on forever. When he DC voltage is restored, the normal operation continues.

WARNING! Before you activate the function, make sure that no dangerous situations can occur. The function restarts the drive automatically and continues operation after a supply break.

Settings and diagnostics

Parameters: 21.01 Start mode (page 257), 21.18 Auto restart time...21.19 Scalar start mode (page 262), 21.34 Force auto restart (page 265) and 30.31 Undervoltage control (page 307).

Events: A3A2 DC link undervoltage (page 483) and 3220 DC link undervoltage (page 495).

Voltage control and trip limits

The control and trip limits of the intermediate DC voltage regulator are relative to the supply voltage as well as drive/inverter type. The DC voltage ($U_{D C}$) is approximately 1.35 times the line-to-line supply voltage, and it is displayed by parameter 01.11 DC voltage.

The following tables show the values of selected DC voltage levels, for both when adaptive voltage limit is enabled by parameter 95.02 Adaptive voltage limits and when adaptive voltage limit is disabled by parameter 95.02 Adaptive voltage limits. Note that the absolute voltages vary according to the drive/inverter type and AC supply voltage range.

Adaptive voltage limit enabled by parameter 95.02 Adaptive voltage limits

	DC voltage level [V]		
See 95.01 Supply voltage.	AC supply voltage range [V] 380... 415	AC supply voltage range [V] 440... 480	95.01 Supply voltage = Automatic / not selected
Overvoltage fault limit	842	842	842
Overvoltage control limit	779	779	779
Internal brake chopper start limit	779	779	779
Internal brake chopper stop limit	759	759	759
Overvoltage warning limit	745	745	745
Undervoltage warning limit	$0.85 \times 1.41 \times$ par 95.03 value	$0.85 \times 1.41 \times$ par 95.03 value	$0.85 \times 1.41 \times$ par 95.03 value
Undervoltage control limit	$0.78 \times 1.41 \times$ par 95.03 value	$0.78 \times 1.41 \times$ par 95.03 value	$0.78 \times 1.41 \times$ par 95.03 value
Charging relay closing limit / Charging deactivation	$0.78 \times 1.41 \times$ par 95.03 value	$0.78 \times 1.41 \times$ par 95.03 value	$0.78 \times 1.41 \times$ par 95.03 value
Charging relay opening limit / Charging activation	$0.73 \times 1.41 \times$ par 95.03 value	$0.73 \times 1.41 \times$ par 95.03 value	$0.73 \times 1.41 \times$ par 95.03 value
DC voltage at upper bound of supply voltage range ($U_{D C \max }$)	560	648	(variable)
DC voltage at lower bound of supply voltage range ($U_{D C \min }$)	513	594	(variable)
Standby limit	$0.73 \times 1.41 \times$ par 95.03 value	$0.73 \times 1.41 \times \mathrm{par} 95.03$ value	$0.73 \times 1.41 \times \mathrm{par} 95.03$ value
Undervoltage fault limit	$0.73 \times 1.41 \times$ par 95.03 value	$0.73 \times 1.41 \times$ par 95.03 value	$0.73 \times 1.41 \times$ par 95.03 value

Note: Parameter 95.03 Estimated AC supply voltage is the estimated AC supply voltage while powering up the drive and it will not be continuously updated during run time.

Adaptive voltage limit disabled by parameter 95.02 Adaptive voltage limits

	DC voltage level [V]			
See 95.01 Supply voltage.	AC supply voltage range [V] 380... 415	AC supply voltage range [V] 440... 480	95.01 Supply voltage $=$ Automatic $/$ not selected	
			If 95.03 Estimated AC supply voltage < 456 V	If 95.03 Estimated AC supply voltage > 456 V
Overvoltage fault limit	842	842	842	842
Overvoltage control limit	779	779	779	779
Internal brake chopper start limit	779	779	779	779
Internal brake chopper stop limit	759	759	759	759
Overvoltage warning limit	745	745	745	745
Undervoltage warning limit	$\begin{gathered} 0.85 \times 1.35 \times 380= \\ 436 \end{gathered}$	$\begin{gathered} 0.85 \times 1.35 \times 440= \\ 504 \end{gathered}$	$\begin{gathered} 0.85 \times 1.35 \times 380= \\ 436 \end{gathered}$	$\begin{gathered} 0.85 \times 1.35 \times 440= \\ 504 \end{gathered}$
Undervoltage control limit	$\begin{gathered} 0.78 \times 1.35 \times 380= \\ 400 \end{gathered}$	$\begin{gathered} 0.78 \times 1.35 \times 440= \\ 463 \end{gathered}$	$\begin{gathered} 0.78 \times 1.35 \times 380= \\ 400 \end{gathered}$	$\begin{gathered} 0.78 \times 1.35 \times 440= \\ 463 \end{gathered}$
Charging relay closing limit / Charging deactivation	$\begin{gathered} 0.78 \times 1.35 \times 380= \\ 400 \end{gathered}$	$\begin{gathered} 0.78 \times 1.35 \times 440= \\ 463 \end{gathered}$	$\begin{gathered} 0.78 \times 1.35 \times 380= \\ 400 \end{gathered}$	$\begin{gathered} 0.78 \times 1.35 \times 440= \\ 463 \end{gathered}$
Charging relay opening limit / Charging activation	$\begin{gathered} 0.73 \times 1.35 \times 380= \\ 374 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 440= \\ 433 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 380= \\ 374 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 440= \\ 433 \end{gathered}$
DC voltage at upper bound of supply voltage range ($U_{D C \max }$)	560	648	(variable)	(variable)
DC voltage at lower bound of supply voltage range $\left(U_{D C \text { min }}\right)$	513	594	(variable)	(variable)
Standby limit	$\begin{gathered} 0.73 \times 1.35 \times 380= \\ 374 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 440= \\ 433 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 380= \\ 374 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 440= \\ 433 \end{gathered}$
Undervoltage fault limit ${ }^{1)}$	$\begin{gathered} 0.73 \times 1.35 \times 380= \\ 374 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 440= \\ 433 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 380= \\ 374 \end{gathered}$	$\begin{gathered} 0.73 \times 1.35 \times 440= \\ 433 \end{gathered}$

${ }^{1)}$ See section Triggering the undervoltage fault on page 174.

Triggering the undervoltage warning

The undervoltage warning A3A2 is triggered if one of the following conditions is active:

- If the DC link voltage goes below the undervoltage warning limit (85%) when the drive is not modulating.
- If the DC link voltage goes below the standby limit (73\%) when the drive is modulating, and auto restart is enabled (that is 21.18 Auto restart time $>0.0 \mathrm{~s}$). The warning will continue to appear if the actual DC link voltage is continuously
below the standby limit and until the auto restart time is elapsed. The drive control board must be externally powered by 24 VDC for this functionality; otherwise the control board can be switched off if the voltage goes below the hardware limit.

Triggering the undervoltage fault

The undervoltage fault 3220 is triggered if the drive is modulating and one of the following conditions is active:

- If the DC link voltage goes below the undervoltage trip limit (73\%) and auto restart is not enabled (that is 21.18 Auto restart time $=0.0 \mathrm{~s}$).
- If the DC link voltage goes below the undervoltage trip limit (73\%) and auto restart is enabled (that is 21.18 Auto restart time $>0.0 \mathrm{~s}$), the undervoltage trip will occur if DC link voltage is continuously below the undervoltage trip limit and after the auto restart time is elapsed. The drive control board must be externally powered by 24 VDC for this functionality; otherwise the control board can be switched off just showing the undervoltage warning.

Settings and diagnostics

Parameters 01.11 DC voltage (page 199), 30.30 Overvoltage control...30.31 Undervoltage control (page 307) and 95.01 Supply voltage...95.02 Adaptive voltage limits (page 412).

Events: A3A2 DC link undervoltage (page 483) and 3220 DC link undervoltage (page 495).

Brake chopper

A brake chopper can be used to handle the energy generated by a decelerating motor. When the DC voltage rises high enough, the chopper connects the DC circuit to an external brake resistor. The chopper operation is based on hysteresis.

The internal brake choppers in the drive (in frames R1...R3) start conducting at internal brake chopper start limit 780 V and stop conducting at internal brake chopper stop limit 760 V (AC supply $380 \ldots 480 \mathrm{~V}$).

For information on external brake choppers, refer to their documentation.
Note: Overvoltage control needs to be disabled for the chopper to operate.

Settings and diagnostics

Parameter group: 43 Brake chopper (page 371).
Parameter: 01.11 DC voltage (page 199).
Events:A792 Brake resistor wiring (page 487), A793 BR excess temperature (page 488), A79C BC IGBT excess temperature (page 488), $7183 B R$ excess temperature (page 500) and 7192 BC IGBT excess temperature (page 500).

Safety and protections

Fixed/Standard protections

Overcurrent

If the output current exceeds the internal overcurrent limit, the IGBTs are shut down immediately to protect the drive.

DC overvoltage

See section Overvoltage control on page 169.

DC undervoltage

See section Undervoltage control (power loss ride-through) on page 169.

Drive temperature

If the temperature rises high enough, the drive first starts to limit the switching frequency and then the current to protect itself. If it is still keeps heating up, for example because of a fan failure, an overtemperature fault is generated.

Short circuit

In case of a short circuit, the IGBTs are shut down immediately to protect the drive.

Emergency stop

The emergency stop signal is connected to the input selected by parameter 21.05 Emergency stop source. An emergency stop can also be generated through fieldbus (parameter 06.01 Main control word, bits 0...2).

The mode of the emergency stop is selected by parameter 21.04 Emergency stop mode. The following modes are available:

- Off1: Stop along the standard deceleration ramp defined for the particular reference type in use
- Off2: Stop by coasting
- Off3: Stop by the emergency stop ramp defined by parameter 23.23 Emergency stop time.

With Off1 or Off3 emergency stop modes, the ramp-down of the motor speed can be supervised by parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay.

Notes:

- The installer of the equipment is responsible for installing the emergency stop devices and all additional devices needed for the emergency stop function to fulfill the required emergency stop categories. For more information, contact your local ABB representative.
- After an emergency stop signal is detected, the emergency stop function cannot be canceled even though the signal is canceled.
- If the minimum (or maximum) torque limit is set to 0%, the emergency stop function may not be able to stop the drive.

Settings and diagnostics

Menu - Primary settings - Start, stop, reference - Run permissions

Parameters: 21.04 Emergency stop mode...21.05 Emergency stop source (page 258), 23.23 Emergency stop time (page 278) and 31.32 Emergency ramp supervision...31.33 Emergency ramp supervision delay (page 317).

Events: AFE1 Emergency stop (off2)...AFE2 Emergency stop (off1 or off3) (page 491) and 73B0 Emergency ramp failed (page 500).

Motor thermal protection

The control program features two separate motor temperature monitoring functions. The temperature data sources and warning/trip limits can be set up independently for each function.

The motor temperature can be monitored using

- the motor thermal protection model (estimated temperature derived internally inside the drive), or
- sensors installed in the windings. This will result in a more accurate motor model.

The motor thermal protection model fulfills standard IEC/EN 61800-5-1 ed. 2.1 requirements for thermal memory retention and speed sensitivity. The estimated temperature is retained over power down. Speed dependency is set by parameters.

Motor thermal protection model

The drive calculates the temperature of the motor on the basis of the following assumptions:

1. When power is applied to the drive for the first time, the motor is assumed to be at ambient temperature (defined by parameter 35.50 Motor ambient temperature). After this, when power is applied to the drive, the motor is assumed to be at the estimated temperature.
2. Motor temperature is calculated using the user-adjustable motor thermal time and motor load curve. The load curve should be adjusted in case the ambient temperature exceeds $30^{\circ} \mathrm{C}$.

Note: The motor thermal model can be used when only one motor is connected to the inverter.

Insulation

4
WARNING! IEC 60664 requires double or reinforced insulation between live parts and the surface of accessible parts of electrical equipment which are either non-conductive or conductive but not connected to the protective earth.

To fulfil this requirement, connect a thermistor to the drive's control terminals using any of these alternatives:

- Separate the thermistor from live parts of the motor with double reinforced insulation.
- Protect all circuits connected to the drive's digital and analog inputs. Protect against contact, and insulate from other low voltage circuits with basic insulation (rated for the same voltage level as the drive's main circuit).
- Use an external thermistor relay. The relay insulation must be rated for the same voltage level as the drive's main circuit.

When CMOD-02 multifunction module is used, it provides sufficient insulation.

Temperature monitoring using PTC sensors

PTC sensors are connected through a CMOD-02 multifunction module (see chapter Optional I/O extension modules, section CMOD-02 multifunction extension module (external 24 V AC/DC and isolated PTC interface) in the Hardware manual of the drive).

The resistance of the PTC sensor increases when its temperature rises. The increasing resistance of the sensor decreases the voltage at the input, and eventually its state switches from 1 to 0 , indicating overtemperature.
$1 . .3$ PTC sensors can also be connected in series to an analog input and an analog output. The analog output feeds a constant excitation current of 1.6 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function calculates the resistance of the sensor and generates an indication if overtemperature is detected.

Leave the sensor end of the cable shield unconnected.
For wiring of the sensor, see chapter Electrical installation in the Hardware manual of the drive.

The figure below shows typical PTC sensor resistance value as a function of temperature.

Isolated PTC sensor can also be connected directly to digital input DI6. At the motor end, the cable shield should be earthed through a capacitor. If this is not possible, leave the shield unconnected. See section Insulation on page 178.

For wiring of the sensor, see the Hardware manual of the drive.

Temperature monitoring using Pt100 sensors

$1 \ldots 3 \mathrm{Pt} 100$ sensors can be connected in series to an analog input and an analog output.

The analog output feeds a constant excitation current of 9.1 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

It is possible to adjust the motor temperature supervision limits and select how the drive reacts when overtemperature is detected.

See section Insulation on page 178.
For the wiring of the sensor, see chapter Electrical installation, section Al1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

Temperature monitoring using Pt1000 sensors

1...3 Pt1000 sensors can be connected in series to an analog input and an analog output.

The analog output feeds a constant excitation current of 0.1 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

See section Insulation on page 178.
For the wiring of the sensor, see chapter Electrical installation, Al1 and AI2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

Temperature monitoring using $\mathbf{N i} 1000$ sensors

One Ni1000 sensor can be connected to an analog input and an analog output on the control unit.

The analog output feeds a constant excitation current of 9.1 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

See section Insulation on page 178.
For the wiring of the sensor, see chapter Electrical installation, Al1 and Al2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

Temperature monitoring using KTY84 sensors

One KTY84 sensor can be connected to an analog input and an analog output on the control unit.

The analog output feeds a constant excitation current of 2.0 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

The figure and table on page 181 show typical KTY84 sensor resistance values as a function of the motor operating temperature.

See section Insulation on page 178.
For the wiring of the sensor, see chapter Electrical installation, Al1 and Al2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

Temperature monitoring using KTY83 sensors

One KTY83 sensor can be connected to an analog input and an analog output on the control unit.

The analog output feeds a constant excitation current of 1.0 mA through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through the analog input and converts it into degrees Celsius.

The figure and table below show typical KTY83 sensor resistance values as a function of the motor operating temperature.

It is possible to adjust the motor temperature supervision limits and select how the drive reacts when overtemperature is detected.

See section Insulation on page 178.
For the wiring of the sensor, see chapter Electrical installation, Al1 and Al2 as Pt100, Pt1000, Ni1000, KTY83 and KTY84 sensor inputs (X1) in the Hardware manual of the drive.

Temperature monitoring using thermistor relays

A normally closed or a normally open thermistor relay can be connected to digital input DI6.

See section Insulation on page 178.

Settings and diagnostics

Menu - Primary settings - Motor - Thermal protection estimated,
 Menu - Primary settings - Motor - Thermal protection measured

Parameter group: 35 Motor thermal protection (page 335).
Events: A491 External temperature 1 (page 483), A492 External temperature 2 (page 483), 4981 External temperature 1 (page 495) and 4982 External temperature 2 (page 495).

Motor overload protection

This section describes motor overload protection without using motor thermal protection model, either with estimated or measured temperature. For protection with the motor thermal protection model, see section Motor thermal protection on page 177.

Motor overload protection is required and specified by multiple standards including the US National Electric Code (NEC), UL 508C and the common ULIIEC 61800-5-1 standard in conjunction with IEC 60947-4-1. The standards allow for motor overload protection without external temperature sensors.

The Motor overload protection fulfills standard IEC/EN 61800-5-1 ed. 2.1 requirements for thermal memory retention and speed sensitivity. The estimated temperature is retained over power down. Speed dependency is set by parameters.

The protection feature allows the user to specify the class of operation in the same manner as the overload relays are specified in standards IEC 60947-4-1 and NEMA ICS 2.

Motor overload protection requires that you specify a motor current tripping level. This is defined by a curve using parameters $35.51,35.52$ and 35.53 . The tripping level is the motor current at which the overload protection will ultimately trip if the motor current remains at this level continuously.

The motor overload class (class of operation), parameter 35.57 Motor overload class, is given as the time required for the overload relay to trip when operating at 7.2 times the tripping level in the case of IEC 60947-4-1 and 6 times the tripping level in the case of NEMA ICS 2. The standards also specify the time to trip for current levels between the tripping level and the 6 times tripping level. The drive satisfies the IEC standard and NEMA standard trip times.

Using class 20 satisfies the UL 508C requirements.
The motor overload algorithm monitors the squared ratio (motor current / tripping level) ${ }^{2}$ and accumulates this over time. This is sometimes referred to as $\mathrm{I}^{2} \mathrm{t}$ protection. The accumulated value is shown with parameter 35.05.

You can define with parameter 35.56 that when 35.05 reaches 88%, a motor overload warning will be generated, and when it reaches 100%, the drive will trip on the motor overload fault. The rate at which this internal value is increased depends on the actual current, tripping level current and overload class selected.

Parameters $35.51,35.52$ and 35.53 serve a dual purpose. They determine the load curve for temperature estimate as well as specify the overload tripping level.

Settings and diagnostics

Parameters common to motor thermal protection and motor overload protection: 35.51 Motor load curve...35.53 Break point (page 344).

Parameters specific to motor overload protection: 35.05 Motor overload level (page 336), 35.56 Motor overload action...35.57 Motor overload class (page 346).

Events: A783 Motor overload (page 487) and 7122 Motor overload (page 500).

Programmable protection functions

External events (parameters 31.01...31.10)

Five different event signals from the process can be connected to selectable inputs to generate trips and warnings for the driven equipment. When the signal is lost, an external event (fault, warning, or a mere log entry) is generated. The contents of the messages can be edited on the control panel by selecting Menu - Primary settings Advanced functions - External events.

Motor phase loss detection (parameter 31.19)

The parameter selects how the drive reacts whenever a motor phase loss is detected.

Supply phase loss detection (parameter 31.21)

The parameter selects how the drive reacts whenever a supply phase loss is detected.

Safe torque off detection (parameter 31.22)

The drive monitors the status of the Safe torque off input, and this parameter selects which indications are given when the signals are lost. (The parameter does not affect the operation of the Safe torque off function itself). For more information on the Safe torque off function, see chapter Safe torque off function in the Hardware manual of the drive.

Swapped supply and motor cabling (parameter 31.23)

The drive can detect if the supply and motor cables have accidentally been swapped (for example, if the supply is connected to the motor connection of the drive). The parameter selects if a fault is generated or not.

Stall protection (parameters 31.24...31.28)
The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (current, frequency and time) and choose how the drive reacts to a motor stall condition.

Overspeed protection (parameters 31.30 and 31.31)

The user can set overspeed and overfrequency limits by specifying a margin that is added to the currently-used maximum and minimum speed or frequency limits.

Local control loss detection (parameter 49.05)

The parameter selects how the drive reacts to a control panel or PC tool communication break.

Al supervision (parameters 12.03...12.04)

The parameters select how the drive reacts when an analog input signal moves out of the minimum and/or maximum limits specified for the input. This can be due to broken I/O wiring or sensor.

Main fan fault (parameter 31.35)

The parameter selects how the drive reacts when a main cooling fan speed problem is detected. For frame sizes R6 or larger only.

Auxiliary fan fault (parameter 31.36)

The parameter selects how the drive reacts when an auxiliary fan problem is detected.

Settings and diagnostics

Parameters:12.03 AI supervision function...12.04 AI supervision selection (page 226), 31.01 External event 1 source...31.35 Main fan fault function (page 318)31.36 Aux fan fault function (page 318) and 49.05 Communication loss action (page 384).

Events:

- A981 External warning 1 (page 490)...A985 External warning 5 (page 491), 9081 External fault 1 (page 502)... 9085 External fault 5 (page 502)
- 3381 Output phase loss (page 495)
- 3130 Input phase loss (page 494)
- B5A0 STO event (page 492), A5A0 Safe torque off (page 485), 5091 Safe torque off (page 496), FA81 Safe torque off 1 (page 502), FA82 Safe torque off 2, (page 502)
- 3181 Wiring or earth fault (page 494)
- A780 Motor stall (page 487), 7121 Motor stall (page 499)
- 7310 Overspeed (page 500), 73F0 Overfrequency (page 500)
- A7EE Panel loss (page 489), 7081 Control panel loss (page 499)
- A8A0 AI supervision (page 489), 80A0 AI supervision (page 501)
- 73B0 Emergency ramp failed (page 500)
- A581 Fan (page 484), 5080 Fan (page 496)
- A582 Auxiliary fan missing (page A582), 5081 Auxiliary fan broken (page 496).

Automatic fault resets

The drive can automatically reset itself after overcurrent, overvoltage, undervoltage and external faults. The user can also specify a fault that is automatically reset.

By default, automatic resets are off and must be specifically activated by the user.

\triangle
WARNING! Before you activate the function, make sure that no dangerous situations can occur. The function resets the drive automatically and continues operation after a fault.

Settings and diagnostics

Menu - Primary settings - Advanced functions - Autoreset faults

Parameters: 31.12 Autoreset selection...31.16 Delay time (page 311).
Events: -

Diagnostics

Signal supervision

Six signals can be selected to be supervised by this function. Whenever a supervised signal exceeds or falls below predefined limits, a bit in 32.01 Supervision status is activated, and a warning or fault generated.

The supervised signal is low-pass filtered.

Settings and diagnostics

Parameter group: 32 Supervision (page 319).
Parameter: 32.01 Supervision status (page 319).
Events: A8B0 ABB Signal supervision 1 (page 490)...A8B5 ABB Signal supervision 6 (page 490), 80B0 Signal supervision 1 (page 501)...80B5 Signal supervision 6 (page 502).

Energy saving calculators

This feature consists of the following functionalities:

- An energy optimizer that adjusts the motor flux in such a way that the total system efficiency is maximized
- A counter that monitors used and saved energy by the motor and displays them in kWh , currency or volume of CO_{2} emissions, and
- A load analyzer showing the load profile of the drive (see separate section on page 187).

In addition, there are counters that show energy consumption in kWh of the current and previous hour as well as the current and previous day.

The amount of energy that has passed through the drive (in either direction) is counted and shown full as GWh, MWh and kWh. The cumulative energy is also shown as full kWh. All these counters are resettable.

Note: The accuracy of the energy savings calculation is directly dependent on the accuracy of the reference motor power given in parameter 45.19 Comparison power.

Settings and diagnostics

Menu - Energy efficiency

Parameter group: 45 Energy efficiency (page 375).
Parameters: 01.50 Current hour kWh...01.53 Previous day kWh (page 200), 01.55 Inverter GWh counter (resettable)...01.58 Cumulative inverter energy (resettable) (page 201).

Events: -

Load analyzer

Peak value logger

The user can select a signal to be monitored by a peak value logger. The logger records the peak value of the signal along with the time the peak occurred, as well as motor current, DC voltage and motor speed at the time of the peak. The peak value is sampled at 2 ms intervals.

Amplitude loggers

The control program has two amplitude loggers.
For amplitude logger 2, the user can select a signal to be sampled at 200 ms intervals, and specify a value that corresponds to 100%. The collected samples are sorted into 10 read-only parameters according to their amplitude. Each parameter represents an amplitude range 10 age points wide, and displays the age of the collected samples that have fallen within that range.

You can view this graphically with the assistant control panel or the Drive composer PC tool.

Amplitude logger 1 is fixed to monitor motor current, and cannot be reset. With amplitude logger 1, 100\% corresponds to the maximum output current of the drive $\left(I_{\max }\right)$, which is listed in the Hardware manual of the drive. The measured current is logged continuously. The distribution of samples is shown by parameters 36.20...36.29.

Settings and diagnostics

Menu - Diagnostics - Load profile

Parameter group: 36 Load analyzer (page 346).
Events: -

Diagnostics menu

The Diagnostics menu provides quick information about active faults, warnings and inhibits in the drive and how to fix and reset them. It also helps you to find out why the drive is not starting, stopping or running at the desired speed.

Local)	(ACS580	* 0.0 Hz
Diagnostics		
Star/stop/reference suminary		
Limit status		
सेध		
जे\%		
केष		
Back	16:04	Select

- Start/stop/reference summary: Use this view to find out where the control comes from if the drive is not starting or stopping as expected, or runs at an undesired speed.
- Limit status: Use this view to find out whether any limitations are active if the drive is running at undesired speed.
- Active faults: Use this view to see currently active faults and how to fix and reset them.
- Active warnings: Use this view to see currently active warnings and how to fix them.
- Active inhibits: Use this view to see the active inhibits and how to fix them. In addition, in the Clock, region, display menu you can disable (enabled by default) and pop-up views showing information on inhibits when you try to start the drive but it is prevented.
- Fault and event log: Shows lists faults and other events.
- Fieldbus: Use this view to find out status information and sent and received data from fieldbus.
- Load profile: Use this view to see the status information of load distribution (that is, drive running time spent on each load level) and peak load levels.

Settings and diagnostics

Menu - Diagnostics

Menu - Primary settings - Clock, region, display - Show inhibit pop-up.

Miscellaneous

Backup and restore

You can make backups of the settings manually to the assistant control panel. The assistant control panel also keeps one automatic backup. You can restore a backup to another drive, or a new drive replacing a faulty one. You can make backups and restore on the control panel or with the Drive composer PC tool.

Backup

Manual backup

Make a backup when necessary, for example, after you have started up the drive or when you want to copy the settings to another drive.

Parameter changes from fieldbus interfaces are ignored unless you have forced parameter saving with parameter 96.07 Parameter save manually.

Automatic backup

The assistant control panel has a dedicated space for one automatic backup. An automatic backup is created two hours after the last parameter change. After completing the backup, the control panel waits for 24 hours before checking if there are additional parameter changes. If there are, it creates a new backup overwriting the previous one when two hours have passed after the latest change.

You cannot adjust the delay time or disable the automatic backup function.
Parameter changes from fieldbus interfaces are ignored unless you have forced parameter saving with parameter 96.07 Parameter save manually.

Restore

The backups are shown on the control panel. Automatic backups are marked with icon \AA and manual backups with $[$. To restore a backup, select it and press \square. In the following display you can view backup contents and restore all or select a subset to be restored.

Note: To restore a backup, the drive has to be in Local control.

Note: There is a risk of removing the QR code menu entry permanently if a backup from a drive with an old firmware or old control panel firmware is restored to a drive with a new firmware from October 2014 or later.

Local\%	(ACS580	* 0.00 Hz	Local)	S580	*0.0 Hz
Backups			ACS580 18.02.2020 autobackup -		
Create					
			Restore all Select par restore group Select user sets Select prod data items		
Back	1609	Select	Back	16:09	Solect

Settings and diagnostics

Menu - Backups

Parameter: 96.07 Parameter save manually (page 418).
Events: -

User parameter sets

The drive supports four user parameter sets that can be saved to the permanent memory and recalled using drive parameters. It is also possible to use digital inputs to switch between user parameter sets. To change a user parameter set, the drive has to be stopped.

A user parameter set contains all editable values in parameter groups 10... 99 except

- forced I/O values such as parameters 10.03 DI force selection and 10.04 DI forced data
- I/O extension module settings (group 15)
- data storage parameters (group 47)
- fieldbus communication settings (groups 50... 53 and 58)
- parameter 95.01 Supply voltage.

As the motor settings are included in the user parameter sets, make sure the settings correspond to the motor used in the application before recalling a user set. In an application where different motors are used with the drive, the motor ID run needs to be performed with each motor and the results saved to different user sets. The appropriate set can then be recalled when the motor is switched.

Settings and diagnostics

Menu - Primary settings - Advanced functions - User sets

Parameters: 10.03 DI force selection...10.04 DI forced data (page 217), 95.01 Supply voltage (page 412) and 96.10 User set status...96.13 User set I/O mode in2 (page 419).

Event: 64B2 User set fault (page 498).

Data storage parameters

Twelve (eight 32-bit, four 16-bit) parameters are reserved for data storage. These parameters are unconnected by default and can be used for linking, testing and commissioning purposes. They can be written to and read from using other parameters' source or target selections.

Settings and diagnostics

Parameter group: 47 Data storage (page 383).
Events: -

Parameter checksum calculation

Two parameter checksums, A and B, can be calculated from a set of parameters to monitor changes in the drive configuration. The sets are different for checksums A and B. Each of these checksum is compared to the corresponding reference checksum; in case of a mismatch, an event (a pure event, warning or fault) is generated. The calculated checksum can be set as the new reference checksum.

The set of parameters for checksum A does not include fieldbus settings.
The parameters included in the checksum A calculation are user editable parameters in parameter groups $10,11,12,13,15,19,20,21,22,23,24,25,28,30,31,32,34$, $35,36,37,40,41,43,45,46,70,71,72,73,74,76,80,94,95,96,97,98,99$.

The set of parameters for checksum B does not include

- fieldbus settings
- motor data settings
- energy data settings.

The parameters included in the checksum B calculation are user editable parameters in parameter groups $10,11,12,13,15,19,20,21,22,23,24,25,28,30,31,32,34$, $35,36,37,40,41,43,46,70,71,72,73,74,76,80,94,95,96,97$.

Settings and diagnostics

Parameters: 96.54 Checksum action...96.69 Actual checksumB (page 422) and 96.71 Approved checksum A...96.72 Approved checksum B (page 423).

Events: B686 Checksum mismatch (page 482), A686 Checksum mismatch (page 486) and 6200 Checksum mismatch (page 497).

User lock

For better cybersecurity, ABB highly recommends that you set a master pass code to prevent, for example, the changing of parameter values and/or the loading of firmware and other files.

4WARNING! ABB will not be liable for damages or losses caused by the failure to activate the user lock using a new pass code. See Cybersecurity disclaimer (page 20).

- To activate the user lock for the first time:
- Enter the default pass code, 10000000, into 96.02 Pass code. This will make parameters $96.100 \ldots 96.102$ visible.
- Enter a new pass code into 96.100 Change user pass code. Always use eight digits; if using Drive composer, finish with Enter.
- Confirm the new pass code in 96.101 Confirm user pass code.

WARNING! Store the pass code in a safe place - the user lock cannot be opened even by ABB if the pass code is lost.

- In 96.102 User lock functionality, define the actions that you want to prevent (ABB recommends you select all the actions unless otherwise required by the application).
- Enter an invalid pass code into 96.02 Pass code.
- Activate 96.08 Control board boot, or cycle the power to the drive.
- Check that parameters 96.100...96.102 are hidden. If they are not, enter another random pass code into 96.02.

To reopen the lock, enter your pass code into 96.02 Pass code. This will again make parameters 96.100...96.102 visible.

Settings and diagnostics
Parameters: 96.02 Pass code (page 417) and 96.100 Change user pass code...96.102 User lock functionality (page 424).

Events: A6B0 User lock is open (page 486) and A6B1 User pass code not confirmed (page 486).

Sine filter support

The control program has a setting that enables the use of ABB sine filters (available separately). With a sine filter connected to the output of the drive, bit 1 of 95.15

Special HW settings must be switched on. The setting forces the drive to use the scalar motor control mode, and limits the switching and output frequencies to

- prevent the drive from operating at filter resonance frequencies, and
- protect the filter from overheating.

Contact your local ABB representative before connecting a sine filter from another manufacturer.

Settings and diagnostics
Parameter: 95.15 Special HW settings (page 412).
Events: -

Parameters

What this chapter contains

The chapter describes the parameters, including actual signals, of the control program. At the end of the chapter, on page 437 , there is a separate list of the parameters whose default values are different between 50 Hz and 60 Hz supply frequency settings.

Terms and abbreviations

Term	Definition
Actual signal	Type of parameter that is the result of a measurement or calculation by the drive, or contains status information. Most actual signals are read- only, but some (especially counter-type actual signals) can be reset.
Def	(In the following table, shown on the same row as the parameter name) The default value of a parameter when used in the Factory macro. For information on other macro-specific parameter values, see chapter Control macros (page 77).
FbEq16	(In the following table, shown on the same row as the parameter range, or for each selection) 16-bit fieldbus equivalent: The scaling between the value shown on the control panel and the integer used in communication when a 16-bit value is selected for transmission to an external system. A dash () indicates that the parameter is not accessible in 16-bit format. The corresponding 32-bit scalings are listed in chapter Additional parameter data (page 443).
Other	The value is taken from another parameter. Choosing "Other" displays a parameter list in which the user can specify the source parameter.
Other [bit]	The value is taken from a specific bit in another parameter. Choosing "Other" displays a parameter list in which the user can specify the source parameter and bit.
Parameter	Either a user-adjustable operating instruction for the drive, or an actual signal.
p.u.	Per unit
[parameter number]	Value of the parameter

Summary of parameter groups

Group	Contents	Page
01 Actual values	Basic signals for monitoring the drive.	199
03 Input references	Values of references received from various sources.	202
04 Warnings and faults.	Information on warnings and faults that occurred last.	203
05 Diagnostics	Various run-time-type counters and measurements related to drive maintenance.	205
06 Control and status words	Drive control and status words.	208
07 System info	Drive hardware and firmware information.	214
10 Standard DI, RO	Configuration of digital inputs and relay outputs.	216
11 Standard DIO, FI, FO	Configuration of the frequency input.	225
12 Standard AI	Configuration of standard analog inputs.	226
13 Standard AO	Configuration of standard analog outputs.	231
15 I/O extension module	Configuration of the I/O extension module installed in slot 2.	236
19 Operation mode	Selection of local and external control location sources and operating modes.	245
20 Start/stop/direction	Start/stop/direction and run/start/jog enable signal source selection; positive/negative reference enable signal source selection.	247
21 Start/stop mode	Start and stop modes; emergency stop mode and signal source selection; DC magnetization settings.	257
22 Speed reference selection	Speed reference selection; motor potentiometer settings.	266
23 Speed reference ramp	Speed reference ramp settings (programming of the acceleration and deceleration rates for the drive).	276
24 Speed reference conditioning	Speed error calculation; speed error window control configuration; speed error step.	280
25 Speed control	Speed controller settings.	280
26 Torque reference chain	Settings for the torque reference chain.	286
28 Frequency reference chain	Settings for the frequency reference chain.	290
30 Limits	Drive operation limits.	301
31 Fault functions	Configuration of external events; selection of behavior of the drive upon fault situations.	309
32 Supervision	Configuration of signal supervision functions 1...6.	319
34 Timed functions	Configuration of the timed functions.	327
35 Motor thermal protection	Motor thermal protection settings such as temperature measurement configuration, load curve definition and motor fan control configuration.	335
36 Load analyzer	Peak value and amplitude logger settings.	346
37 User load curve	Settings for user load curve.	349
40 Process PID set 1	Parameter values for process PID control.	353
41 Process PID set 2	A second set of parameter values for process PID control.	369
43 Brake chopper	Settings for the internal brake chopper.	371
44 Mechanical brake control	Configuration of mechanical brake control.	373
45 Energy efficiency	Settings for the energy saving calculators as well as peak and energy loggers.	375

Group	Contents	Page
46 Monitoring/scaling settings	Speed supervision settings; actual signal filtering; general scaling settings.	379
47 Data storage	Data storage parameters that can be written to and read from using other parameters' source and target settings.	383
49 Panel port communication	Communication settings for the control panel port on the drive.	384
50 Fieldbus adapter (FBA)	Fieldbus communication configuration.	386
51 FBA A settings	Fieldbus adapter A configuration.	390
52 FBA A data in	Selection of data to be transferred from drive to fieldbus controller through fieldbus adapter A.	392
53 FBA A data out	Selection of data to be transferred from fieldbus controller to drive through fieldbus adapter A.	392
58 Embedded fieldbus	Configuration of the embedded fieldbus (EFB) interface.	393
71 External PID1	Configuration of external PID.	400
76 PFC configuration	PFC (Pump and fan control) and Autochange configuration parameters. See also section Pump and fan control (PFC) on page 142.	403
77 PFC maintenance and	PFC (Pump and fan control) and Autochange configuration parameters. See also section Pump and fan control (PFC) on page 142.	411
monitoring	Various hardware-related settings.	412
95 HW configuration	Language selection; access levels; macro selection; parameter save and restore; control unit reboot; selectior; parameter sets; unit	415
96 System	Switching frequencer checksum; user lock. cogging (signal injection); IR compensensation.	
97 Motor control flux braking; anti-	425	
98 User motor parameters	Motor values supplied by the user that are used in the motor model.	429
99 Motor data	Motor configuration settings.	431

Parameter listing

No.	Name/Value	Description	Def/FbEq16
01 Actual values		Basic signals for monitoring the drive. All parameters in this group are read-only unless otherwise noted. Note: Values of these actual signals are filtered with the filter time defined in group 46 Monitoring/scaling settings. The selection lists for parameters in other groups mean the raw value of the actual signal instead. For example, if a selection is "Output frequency" it does not point to the value of parameter 01.06 Output frequency but to the raw value.	
01.01	Motor speed used	Estimated motor speed. A filter time constant for this signal can be defined by parameter 46.11 Filter time motor speed.	-
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Estimated motor speed.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
01.02	Motor speed estimated	Estimated motor speed in rpm. A filter time constant for this signal can be defined by parameter 46.11 Filter time motor speed.	-
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Estimated motor speed.	See par. 46.01
01.03	Motor speed \%	Motor speed in percent of the synchronous motor speed.	-
	$\begin{aligned} & -1000.00 \ldots \\ & 1000.00 \% \end{aligned}$	Motor speed.	$10=1 \%$
01.06	Output frequency	Estimated drive output frequency in Hz . A filter time constant for this signal can be defined by parameter 46.12 Filter time output frequency.	-
	$\begin{aligned} & \hline-500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Estimated output frequency.	$\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$
01.07	Motor current	Measured (absolute) motor current in A .	-
	0.00...30000.00 A	Motor current.	$\begin{aligned} & \text { See par. } \\ & 46.0510=1 \mathrm{~A} \end{aligned}$
01.08	Motor current \% of motor nom	Motor current (drive output current) in percent of the nominal motor current.	-
	0.0...1000.0\%	Motor current.	1 = 1\%
01.09	Motor current \% of drive nom	Motor current (drive output current) in percent of the nominal drive current.	-
	0.0...1000.0\%	Motor current.	1 = 1\%
01.10	Motor torque	Motor torque in percent of the nominal motor torque. See also parameter 01.30 Nominal torque scale. A filter time constant for this signal can be defined by parameter 46.13 Filter time motor torque.	-
	-1600.0...1600.0\%	Motor torque.	See par. 46.03
01.11	DC voltage	Measured DC link voltage.	-
	0.00...2000.00 V	DC link voltage.	$10=1 \mathrm{~V}$
01.13	Output voltage	Calculated motor voltage in V AC.	-
	$0 . . .2000 \mathrm{~V}$	Motor voltage.	$1=1 \mathrm{~V}$

No.	Name/Value	Description	Def/FbEq16
01.14	Output power	Drive output power. The unit is selected by parameter 96.16 Unit selection. A filter time constant for this signal can be defined by parameter 46.14 Filter time power.	-
	$\begin{aligned} & \hline-32768.00 \ldots \\ & 32767.00 \mathrm{~kW} \end{aligned}$	Output power.	See par. 46.04
01.15	Output power \% of motor nom	Output power in percent of the nominal motor power.	-
	-300.00... 300.00\%	Output power.	$10=1 \%$
01.17	Motor shaft power	Estimated mechanical power at motor shaft.	-
	$\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \mathrm{~kW} \text { or hp } \end{aligned}$	Motor shaft power.	See par. 46.04
01.18	Inverter GWh counter	Amount of energy that has passed through the drive (in either direction) in full gigawatt-hours. The minimum value is zero.	-
	0... 65535 GWh	Energy in GWh.	1 = 1 GWh
01.19	Inverter MWh counter	Amount of energy that has passed through the drive (in either direction) in full megawatt-hours. Whenever the counter rolls over, 01.18 Inverter GWh counter is incremented. The minimum value is zero.	-
	0... 1000 MWh	Energy in MWh.	1 = 1 MWh
01.20	Inverter kWh counter	Amount of energy that has passed through the drive (in either direction) in full kilowatt-hours. Whenever the counter rolls over, 01.19 Inverter MWh counter is incremented. The minimum value is zero.	-
	0... 1000 kWh	Energy in kWh.	$10=1 \mathrm{kWh}$
01.24	Flux actual \%	Used flux reference in percent of nominal flux of motor.	-
	0...200\%	Flux reference.	1 = 1\%
01.30	Nominal torque scale	Torque that corresponds to 100\% of nominal motor torque. The unit is selected by parameter 96.16 Unit selection. Note: This value is copied from parameter 99.12 Motor nominal torque, if entered. Otherwise the value is calculated from other motor data.	-
	$\begin{aligned} & 0.000 \ldots \\ & 4000000.000 \\ & \mathrm{~N} \cdot \mathrm{~m} \text { or lb } \cdot \mathrm{ft} \end{aligned}$	Nominal torque.	$1=100$ unit
01.50	Current hour kWh	Current hour energy consumption. This is the energy of the last 60 minutes (not necessarily continuous) the drive has been running, not the energy of a calendar hour. If the power is cycled, after the drive is again up and running, the parameter value is set to the value it had before the power cycle.	-
	$\begin{aligned} & 0.00 \ldots 1000000.00 \\ & \mathrm{kWh} \end{aligned}$	Energy.	$1=1 \mathrm{kWh}$
01.51	Previous hour kWh	Previous hour energy consumption. The value 01.50 Current hour $k W h$ is stored here when its values has been cumulated for 60 minutes. If the power is cycled, after the drive is again up and running, the parameter value is set to the value it had before the power cycle.	-
	$\begin{aligned} & 0.00 \ldots 1000000.00 \\ & \text { kWh } \end{aligned}$	Energy.	$1=1 \mathrm{kWh}$

No.	Name/Value	Description	Def/FbEq16
01.52	Current day kWh	Current day energy consumption. This is the energy of the last 24 hours (not necessarily continuous) the drive has been running, not the energy of a calendar day. If the power is cycled, after the drive is again up and running, the parameter value is set to the value it had before the power cycle.	-
	$\begin{aligned} & 0.00 \ldots 1000000.00 \\ & \text { kWh } \end{aligned}$	Energy.	$1=1 \mathrm{kWh}$
01.53	Previous day kWh	Previous day energy consumption. The value 01.52 Current day $k W h$ is stored here when its value has been cumulated for 24 hours. If the power is cycled, after the drive is again up and running, the parameter value is set to the value it had before the power cycle.	-
	$\begin{aligned} & 0.00 \ldots 1000000.00 \\ & \text { kWh } \end{aligned}$	Energy.	$1=1 \mathrm{kWh}$
01.54	Cumulative inverter energy	Amount of energy that has passed through the drive (in either direction) in full kilowatt-hours. The minimum value is zero.	-
	$\begin{aligned} & \hline-200000000.0 \ldots \\ & 200000000.0 \mathrm{kWh} \end{aligned}$	Energy in kWh.	$10=1 \mathrm{kWh}$
01.55	Inverter GWh counter (resettable)	Amount of energy that has passed through the drive (in either direction) in full gigawatt-hours. The minimum value is zero. Can be reset from the control panel by keeping Reset down for over 3 seconds. Resetting any of parameters 01.55... 01.58 resets all of them.	-
	0... 65535 GWh	Energy in GWh.	$1=1 \mathrm{GWh}$
01.56	Inverter MWh counter (resettable)	Amount of energy that has passed through the drive (in either direction) in full megawatt-hours. Whenever the counter rolls over, 01.55 Inverter GWh counter (resettable) is incremented. The minimum value is zero. Can be reset from the control panel by keeping Reset down for over 3 seconds. Resetting any of parameters $01.55 \ldots 01.58$ resets all of them.	-
	0... 1000 MWh	Energy in MWh.	1 = 1 MWh
01.57	Inverter kWh counter (resettable)	Amount of energy that has passed through the drive (in either direction) in full kilowatt-hours. Whenever the counter rolls over, 01.56 Inverter MWh counter (resettable) is incremented. The minimum value is zero. Can be reset from the control panel by keeping Reset down for over 3 seconds. Resetting any of parameters 01.55...01.58 resets all of them.	-
	0... 1000 kWh	Energy in kWh.	$10=1 \mathrm{kWh}$
01.58	Cumulative inverter energy (resettable)	Amount of energy that has passed through the drive (in either direction) in full kilowatt-hours. The minimum value is zero. Can be reset from the control panel by keeping Reset down for over 3 seconds. Resetting any of parameters 01.55...01.58 resets all of them.	-
	$\begin{aligned} & \hline-200000000.0 \ldots \\ & 200000000.0 \mathrm{kWh} \end{aligned}$	Energy in kWh.	$10=1 \mathrm{kWh}$
01.61	Abs motor speed used	Absolute value of parameter 01.01 Motor speed used.	-
	$\begin{aligned} & 0.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Estimated motor speed.	See par. 46.01

No.	Name/Value	Description	Def/FbEq16
01.62	Abs motor speed \%	Absolute value of parameter 01.03 Motor speed \%.	-
	0.00...1000.00\%	Estimated motor speed.	$10=1 \%$
01.63	Abs output frequency	Absolute value of parameter 01.06 Output frequency.	-
	0.00... 500.00 Hz	Estimated output frequency.	See par. 46.02
01.64	Abs motor torque	Absolute value of parameter 01.10 Motor torque.	-
	0.0...1600.0\%	Motor torque.	See par. 46.03
01.65	Abs output power	Absolute value of parameter 01.14 Output power.	-
	$\begin{aligned} & 0.00 \ldots 32767.00 \\ & \text { kW } \end{aligned}$	Output power.	1 = 1 kW
01.66	Abs output power \% motor nom	Absolute value of parameter 01.15 Output power \% of motor nom.	-
	0.00... 300.00\%	Output power.	1 = 1\%
01.67	Abs output power \% drive nom	Absolute value of output power \% of drive nominal.	-
	0.00... 300.00\%	Output power.	1 = 1\%
01.68	Abs motor shaft power	Absolute value of parameter 01.17 Motor shaft power.	-
	$\begin{aligned} & 0.00 \ldots 32767.00 \\ & \text { kW or hp } \end{aligned}$	Motor shaft power.	$1=1 \mathrm{~kW}$

03 Input references		Values of references received from various sources.	
03.01	Panel reference	Reference 1 given from the control panel or PC tool.	-
	$\begin{aligned} & -100000.00 \ldots \\ & 100000.00 \end{aligned}$	Control panel or PC tool reference.	$1=10$
03.02	Panel reference remote	Reference 2 given from the control panel or PC tool.	-
	$\begin{aligned} & -100000.00 \ldots \\ & 100000.00 \end{aligned}$	Control panel or PC tool reference.	$1=10$
03.05	FB A reference 1	Reference 1 received through fieldbus adapter A. See also chapter Fieldbus control through a fieldbus adapter (page 535).	-
	$\begin{aligned} & -100000.00 \ldots \\ & 100000.00 \end{aligned}$	Reference 1 from fieldbus adapter A .	$1=10$
03.06	FB A reference 2	Reference 2 received through fieldbus adapter A.	-
	$\begin{aligned} & \hline-100000.00 \ldots \\ & 100000.00 \end{aligned}$	Reference 2 from fieldbus adapter A .	$1=10$
03.09	EFB reference 1	Scaled reference 1 received through the embedded fieldbus interface.	$1=10$
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \end{aligned}$	Scaled reference 1 received through the embedded fieldbus interface.	$1=10$

No.	Name/Value	Description	Def/FbEq16
03.10	EFB reference 2	Scaled reference 2 received through the embedded fieldbus interface.	$1=10$
	$-30000.00 \ldots$	Scaled reference 2 received through the embedded fieldbus interface.	$1=10$

04 Warnings and faults	Information on warnings and faults that occurred last. For explanations of individual warning and fault codes, see chapter Fault tracing. All parameters in this group are read-only unless otherwise noted.	
04.01	Tripping fault	Code of the 1st active fault (the fault that caused the current trip).
	0000h...FFFFh	1st active fault.
04.02	Active fault 2	Code of the 2nd active fault.
	0000h...FFFFh	2nd active fault.

No.	Name/Value	Description	Def/FbEq16
04.40	Event word 1	Shows the user-defined event word. This word collects the status of the events (warnings, faults or pure events) selected by parameters $04.41 \ldots 04.71$. This parameter is read-only.	-
	Bit Name	Description	
	0 User bit 0	1 = Event selected by parameter 04.41 is active	
	User bit 1	1 = Event selected by parameter 04.43 is active	
	
	15 User bit 15	1 = Event selected by parameter 04.71 is active	
	0000h...FFFFh	User-defined event word.	1 = 1
04.41	Event word 1 bit 0 code	Selects the hexadecimal code of an event (warning, fault or pure event) whose status is shown as bit 0 of 04.40 Event word 1. The event codes are listed in chapter Fault tracing (page 479).	$\begin{aligned} & 0 \times 2310 \mathrm{~h} \\ & 2310(\text { p. } 493) \end{aligned}$
	0000h...FFFFh	Code of event.	1 = 1
04.43	Event word 1 bit 1 code	Selects the hexadecimal code of an event (warning, fault or pure event) whose status is shown as bit 1 of 04.40 Event word 1. The event codes are listed in chapter Fault tracing (page 479).	$\begin{array}{\|l\|} \hline 0 \times 3210 \mathrm{~h} \\ 3210 \text { (p. 494) } \end{array}$
	0000h...FFFFh	Code of event.	1 = 1
04.45	Event word 1 bit 2 code	...	$\begin{aligned} & \hline 0 \times 4310 \mathrm{~h} \\ & 4310 \text { (p. 495) } \end{aligned}$
04.47	Event word 1 bit 3 code	\cdots	$\begin{aligned} & 0 \times 2340 \mathrm{~h} \\ & 2340 \text { (p. 494) } \end{aligned}$
04.49	Event word 1 bit 4 code	...	0x0000h
04.51	Event word 1 bit 5 code	...	$\begin{array}{\|l\|} \hline 0 \times 3220 \mathrm{~h} \\ 3220 \text { (p. 495) } \end{array}$
04.53	Event word 1 bit 6 code	...	$\begin{aligned} & \text { 0x80A0h } \\ & 80 A 0 \text { (p. 501) } \end{aligned}$
04.55	Event word 1 bit 7 code	...	0x0000h
04.57	Event word 1 bit 8 code	...	$\begin{aligned} & \hline 0 \times 7122 \mathrm{~h} \\ & 7122 \text { (p. 500) } \end{aligned}$
04.59	Event word 1 bit 9 code	\ldots	$\begin{aligned} & \hline 0 \times 7081 \mathrm{~h} \\ & 7081 \text { (p. 499) } \end{aligned}$
04.61	Event word 1 bit 10 code	...	$\begin{array}{\|l\|} \hline \text { OxFF61h } \\ \text { FF61 (p. 503) } \end{array}$
04.63	Event word 1 bit 11 code	...	$\begin{aligned} & \hline 0 \times 7121 \mathrm{~h} \\ & 7121 \text { (p. 499) } \end{aligned}$
04.65	Event word 1 bit 12 code	...	$\begin{array}{\|l\|} \hline 0 \times 4110 \mathrm{~h} \\ 4110 \text { (p. 495) } \end{array}$
04.67	Event word 1 bit 13 code	\ldots	$\begin{array}{\|l\|} \hline 0 \times 9081 \mathrm{~h} \\ 9081 \text { (p. 502) } \end{array}$
04.69	Event word 1 bit 14 code	\ldots	$\begin{array}{\|l\|} \hline 0 \times 9082 \mathrm{~h} \\ 9082 \text { (p. 502) } \end{array}$

No.	Name/Value	Description	Def/FbEq16
04.71	Event word 1 bit 15 code	Selects the hexadecimal code of an event (warning, fault or pure event) whose status is shown as bit 15 of 04.40 Event word 1. The event codes are listed in chapter Fault tracing (page 479).	0x2330h 2330 (p. 494)
	0000h...FFFFh	Code of event.	$1=1$

05 Diagnostics		Various run-time-type counters and measurements related to drive maintenance. All parameters in this group are read-only unless otherwise noted.	
05.01	On-time counter	On-time counter. The counter runs when the drive is powered.	-
	0... 65535 days	On-time counter.	1 = 1 days
05.02	Run-time counter	Motor run-time counter in full days. The counter runs when the inverter modulates.	-
	0... 65535 days	Motor run-time counter.	1 = 1 days
05.03	Hours run	Corresponding parameter to 05.02 Run-time counter in hours, that is, 24 * 05.02 value + fractional part of a day.	-
	$\begin{aligned} & 0.0 \ldots \\ & 429496729.5 \mathrm{~h} \end{aligned}$	Hours.	$1=1 \mathrm{~h}$
05.04	Fan on-time counter	Running time of the drive cooling fan. Can be reset from the control panel by keeping Reset down for over 3 seconds.	-
	0... 65535 days	Cooling fan run-time counter.	1 = 1 days
05.08	Cabinet temperature	(Only visible for ACS580-07 cabinet drives). Temperature inside the cabinet. Activated by bit 6 of parameter 95.21 HW options word 2.	-
	$40 . .120^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	Temperature inside the cabinet in degrees Celsius or Fahrenheit.	1 = 1 unit
05.10	Control board temperature	Measured temperature of the control unit.	-
	$-100 . . .300{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	Control unit temperature in degrees Celsius or Fahrenheit.	1 = unit
05.11	Inverter temperature	Estimated drive temperature in percent of fault limit. The fault limit varies according to the type of the drive. $\begin{aligned} & 0.0 \%=0{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right) \\ & 100.0 \%=\text { Fault limit } \end{aligned}$	-
	-40.0...160.0\%	Drive temperature in percent.	1 = 1\%

No.	Name/Value		Description	Def/FbEq16
05.20	Diagnostic word 1		Diagnostic word 1. For possible causes and remedies, see chapter Fault tracing.	-
	Bit	Name	Value	
	0	Any warning or fault	Yes = Drive has generated a warning or tripped on a fault.	
	1	Any warning	Yes = Drive has generated a warning.	
	2	Any fault	Yes = Drive has tripped on a fault.	
	3	Reserved		
	4	Overcurrent fault	Yes = Drive has tripped on fault 2310 Overcurrent.	
	5	Reserved		
	6	DC overvoltage	Yes = Drive has tripped on fault 3210 DC link overvoltage.	
	7	DC undervoltage	Yes = Drive has tripped on fault 3220 DC link undervoltage.	
	8	Reserved		
	9	Device overtemperature fault	Yes = Drive has tripped on fault 4310 Excess temperature.	
	10... 15	Reserved		

| | 0000h...FFFFh | Diagnostic word 1. |
| :--- | :--- | :--- | 1 | $1=1$ |
| :--- |
| 05.21 | Diagnostic word 2 \quad| Diagnostic word 2. For possible causes and remedies, see |
| :--- |
| chapter Fault tracing. |

Bit	Name	Value	
$0 \ldots 9$	Reserved		
10	Motor overtemperature fault	Yes = Drive has tripped on fault 4981 External temperature 1 or 4982 Safe motor temperature.	
$11 \ldots 15$	Reserved		

	0000h...FFFFh	Diagnostic word 2.
05.22	Diagnostic word 3	Diagnostic word 3.

Bit	Name	Value	
$0 \ldots 8$	Reserved		
9	kWh pulse	Yes $=\mathrm{kWh}$ pulse is active.	
10	Reserved		
11	Fan command	On = Drive fan is rotating above idle speed.	
$12 \ldots 15$	Reserved		

	0000h...FFFFh	Diagnostic word 3.	$1=1$
05.80	Motor speed at fault	Shows the value of copy of parameter 28.01 Frequency ref ramp input (in scalar control mode) or 23.01 Speed ref ramp input (in speed control mode) at the occurrence of the latest fault.	-
	$-30000.00 \ldots$ 30000.00 rpm	Estimated motor speed.	$10=1 \mathrm{rpm}$
05.81Output frequency at fault	Shows the value of copy of parameter 01.06 Output frequency at the occurrence of the latest fault.	-	

No.	Name/Value	Description	Def/FbEq16
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Estimated output frequency.	
05.82	DC voltage at fault	Shows the value of copy of parameter 01.11 DC voltage at the occurrence of the latest fault.	-
	0.00...2000.00 V	DC link voltage.	$10=1 \mathrm{~V}$
05.83	Motor current at fault	Shows the value of copy of parameter 01.07 Motor current at the occurrence of the latest fault.	-
	0.00...30000.00 A	Motor current.	$10=1 \mathrm{~V}$
05.84	Motor torque at fault	Shows the value of copy of parameter 01.10 Motor torque at the occurrence of the latest fault.	-
	-1600.0...1600.0\%	Motor torque.	1 = 1\%
05.85	Main status word at fault	Shows the value of copy of parameter 06.11 Main status word at the occurrence of the latest fault.	-
	0000h...FFFFh	Main status word.	$1=1$
05.86	DI delayed status at fault	Shows the value of copy of parameter 10.02 DI delayed status at the occurrence of the latest fault.	-
	0000h...FFFFh	Delayed status for digital inputs.	$1=1$
05.87	Inverter temperature at fault	Shows the value of copy of parameter 05.11 Inverter temperature at the occurrence of the latest fault.	-
	$-40 . . .160^{\circ} \mathrm{C}$	Drive temperature in ${ }^{\circ} \mathrm{C}$.	$1=1^{\circ} \mathrm{C}$
05.88	Reference used at fault	Shows the value of copy of parameter 28.01 Frequency ref ramp input (in scalar control mode) or 23.01 Speed ref ramp input (in speed control mode) at the occurrence of the latest fault.	-
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{~Hz} \end{aligned}$	Frequency or speed reference.	$1=1 \mathrm{~Hz}$

No. Name/Value	Description	Def/FbEq16
06 Control and status words	Drive control and status words.	
06.01 Main control word	Shows the control signals as received from the selected sources (such as digital inputs, the fieldbus interfaces and the application program). The main control word of the drive. For the bit descriptions see page 541. The related status word and state diagram are presented on pages 543 and 544 respectively. Note: When using fieldbus control, this parameter value is not same as the Control word value that the drive receives from PLC. For the exact value, see parameter 50.12 FBA A debug mode. This parameter is read-only.	-
	Off2 control	
	2 Off3 control	
	3 Run	
	4 Ramp out zero	
	5 Ramp hold	
	Ramp in zero	
	7 Reset	
	8 Inching 1	
	Inching 2	
	10 Remote cmd	
	11 Ext ctrl loc	
	12 User bit 0	
	13 User bit 1	
	14 User bit 2 15	
	15 User bit 3	
0000h...FFFFh	Main control word.	1 = 1

No.	Name/Value		Description	Def/FbEq16
06.16	Drive status word 1		Drive status word 1. This parameter is read-only.	-
	Bit	Name	Description	
	0	Enabled	1 = Both run enable (see par. 20.12) and start enable (20.19) signals are present. Note: This bit is not affected by the presence of a fault.	
	1	Inhibited	1 = Start inhibited. To start the drive, the inhibiting signal (see par. 06.18) must be removed and the start signal cycled.	
	2	DC charged	1 = DC circuit has been charged	
	3	Ready to start	1 = Drive is ready to receive a start command	
	4	Following reference	1 = Drive is ready to follow given reference	
	5	Started	1 = Drive has been started	
	6	Modulating	1 = Drive is modulating (output stage is being controlled)	
	7	Limiting	1 = Any operating limit (speed, torque, etc.) is active	
	8	Local control	1 = Drive is in local control	
	9	Network control	1 = Drive is in network control (see page 18).	
	10	Ext1 active	1 = Control location EXT1 active	
	11	Ext2 active	1 = Control location EXT2 active	
	12	Reserved		
	13	Start request	1 = Start requested. $0=$ When Enable to rotate signal (see par. 20.22) is 0 (rotating of the motor is disabled).	
	14	Running	1 = Drive is running.	
	15	Reserved		
	0000h...FFFFh D		Drive status word 1.	1 = 1

No.	Name/Value		Description		Def/FbEq16
06.17	Drive status word 2		Drive status word 2. This parameter is read-only.		-
	Bit	Name \quad Description			
	0	Identification run done		1 = Motor identification (ID) run has been performed	
	1	Magnetized		1 = The motor has been magnetized	
	2	Torque control		1 = Torque control mode active	
	3	Speed control		1 = Speed control mode active	
	4	Reserved			
	5	Safe reference active		1 = A "safe" reference is applied by functions such as parameters 49.05 and 50.02	
		Last speed active		1 = A "last speed" reference is applied by functions such as parameters 49.05 and 50.02	
	7	Reserved			
	8	Emergency stop failed		1 = Emergency stop failed (see parameters 31.32 and 31.33)	
	9	Jogging active		1 = Jogging enable signal is on	
	10	Above limit		1 = Actual speed or frequency equals or exceeds limit (defined by parameters $46.31 \ldots 46.32$). Valid in both directions of rotation	
	11...12	Reserved			
	13	Start delay active		1 = Start delay (par. 21.22) active.	
	14...15	Reserved			
	0000h...FFFFh		Drive status word 2.		1 = 1

212 Parameters

No.	Name/Value		Description		Def/FbEq16
06.18	Start inhibit status word		Start inhibit status word. This word specifies the source of the inhibiting signal that is preventing the drive from starting. The conditions marked with an asterisk (*) only require that the start command is cycled. In all other instances, the inhibiting condition must be removed first. See also parameter 06.16 Drive status word 1, bit 1. This parameter is read-only.		-
	Bit	Name		Description	
	0	Not ready run		1 = DC voltage is missing or drive has not been parametrized correctly. Check the parameters in groups 95 and 99 .	
	1	Ctrl location changed		* 1 = Control location has changed	
	2	SSW inhibit		1 = Control program is keeping itself in inhibited state	
	3	Fault reset		* 1 = A fault has been reset	
	4	Lost start enable		1 = Start enable signal missing	
	5	Lost run enable		1 = Run enable signal missing	
	6	Reserved			
	7	STO		1 = Safe torque off function active	
	8	Current calibration ended		* 1 = Current calibration routine has finished	
	9	ID run ended		* 1 = Motor identification run has finished	
	10	Reserved			
	11	Em Off1		1 = Emergency stop signal (mode off1)	
	12	Em Off2		1 = Emergency stop signal (mode off2)	
	13	Em Off3		1 = Emergency stop signal (mode off3)	
	14	Auto reset inhibit		1 = The autoreset function is inhibiting operation	
	15	Jogging active		1 = The jogging enable signal is inhibiting operation	
	0000h...FFFFh		Start inhibit status word.		$1=1$
06.19	Speed control status word		Speed control status word. This parameter is read-only.		
	Bit	Name		Description	
	0	Zero speed		1 = Drive has been running below zero speed limit (par. 21.06) for a time defined by parameter 21.07 Zero speed delay	
	1	Forward		1 = Drive is running in forward direction above zero speed limit (par. 21.06)	
	2	Reverse		1 = Drive is running in reverse direction above zero speed limit (par. 21.06)	
	3... 6	Reserved			
	7	Any constant speed request		1 = A constant speed or frequency has been selected; see par. 06.20.	
	$8 . .15$	Reserved			
	0000h...FFFFh		Speed control status word.		1 = 1

No.	Name/Value	Description	Def/FbEq16
06.20	Constant speed status word	Constant speed/frequency status word. Indicates which constant speed or frequency is active (if any). See also parameter 06.19 Speed control status word, bit 7, and section Constant speeds/frequencies (page 124). This parameter is read-only.	-
	Bit Name Description 0 Constant speed 1 1 = Constant speed or frequency 1 selected 1 Constant speed 2 1 = Constant speed or frequency 2 selected 2 Constant speed 3 1 = Constant speed or frequency 3 selected 3 Constant speed 4 1 = Constant speed or frequency 4 selected 4 Constant speed 5 1 = Constant speed or frequency 5 selected 5 Constant speed 6 1 = Constant speed or frequency 6 selected 6 Constant speed 7 1 = Constant speed or frequency 7 selected $7 \ldots 15$ Reserved		

$\left.\begin{array}{|l|l|l|}\hline & \text { 0000h...FFFFh } & \text { Constant speed/frequency status word. }\end{array}\right] 1=1$

Bit	Name	Description		
0	DC hold active	$1=$ DC hold is active		
1	Post-magnetizing active	$1=$ Post-magnetizing is active		
2	Motor pre-heating active	$1=$ Motor pre-heating is active		
3	PM smooth start active	$1=$ PM smooth start active		
4	Reserved			
5	DC brake active	$1=$ Brake is active		
$6 \ldots 15$	Reserved			

	0000h...FFFFh	Drive status word 1.	1 = 1
	0000h...FFFFh	Start inhibit status word.	1 = 1
06.29	MSW bit 10 selection	Selects a binary source whose status is transmitted as bit 10 (User bit 0) of 06.11 Main status word.	Above limit
	False	0.	0
	True	1.	1
	Above limit	Bit 10 of 06.17 Drive status word 2 (see page 211).	2
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
06.30	MSW bit 11 selection	Selects a binary source whose status is transmitted as bit 11 (User bit 0) of 06.11 Main status word.	Ext ctrl loc
	False	0.	0
	True	1.	1
	Ext ctrl loc	Bit 11 of 06.01 Main control word (see page 209).	2
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-

No.	Name/Value	Description	Def/FbEq16
06.31	MSW bit 12 selection	Selects a binary source whose status is transmitted as bit 12 (User bit 1) of 06.11 Main status word.	Ext run enable
	False	0.	0
	True	1.	1
	Ext run enable	Status of the external run enable signal (see parameter 20.12 Run enable 1 source).	2
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
MSW bit 13 selection	Selects a binary source whose status is transmitted as bit 13 (User bit 2) of 06.11 Main status word.	False	
False	0.	0	
True	1.	1	
Other [bit]	Source selection (see Terms and abbreviations on page 196).	-	
MSW bit 14 selection	Selects a binary source whose status is transmitted as bit 14 (User bit 3) of 06.11 Main status word.	False	
False	0.	0	
True	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-

07 System info		Drive hardware and firmware information. All parameters in this group are read-only.	
07.03	Drive rating id	Type of the drive. (Rating ID in brackets.)	-
07.04	Firmware name	Firmware identification.	-
07.05	Firmware version	Version number of the firmware.	-
07.06	Loading package name	Name of the firmware loading package.	-
07.07	Loading package version	Version number of the firmware loading package.	-
07.10	Language file set	The language file set (language package) in use, see parameter 96.01 Language. The language file set value is written to this parameter after the first start-up, and it is available in this parameter through power-ups.	-
	Not known	No language file set in use.	0
	Global	Global language file set in use.	1
	European	European language file set in use.	2
	Asian	Asian language file set in use.	3
07.11	Cpu usage	Microprocessor load in percent.	-
	0...100\%	Microprocessor load.	1 = 1\%
07.25	Customization package name	First five ASCII letters of the name given to the customization package. The full name is visible in the System info menu under the Main menu on the control panel or the Drive composer PC tool. _N/A_ = None.	-
07.26	Customization package version	Customization package version number. Also visible in the System info menu under the Main menu on the control panel or the Drive composer PC tool.	-

No.	Name/Value		Description			Def/FbEq16
07.30	Adaptive program status		Shows the status of the adaptive program. See section Adaptive programming (page 117).			-
	Bit	Name			Description	
	0	Initialized			1 = Adaptive program initialized	
	1	Editing			1 = Adaptive program is being edited	
	2	Edit done			1 = Editing of adaptive program finished	
	3	Running			1 = Adaptive program running	
	4...13	Reserved				
	14	State changing			1 = State change in progress in adaptive programming engine	
	15	Faulted			1 = Error in adaptive program	
	0000h...FFFFh		Adaptive program status.			1 = 1
07.31	$A P$ sequence state		Shows the number of the active state of the sequence program part of the adaptive program (AP). If adaptive programming is not running, or it does not contain a sequence program, the parameter is zero.			
	0... 20					1 = 1
07.35	Drive configuration		Performs HW initialization, and shows the detected option module configuration of the drive. Plug ' n ' play configuration during the HW initialization, if the drive is not able to detect any option module, the value is set to 1 , Base unit. For information on automatic setting of parameters after detecting a module, see section Automatic drive configuration for fieldbus control on page 548.			0000h
	Bit Name Description					
	0	Not initialized		1 = Drive configuration has not been initialized		
	1	Base unit		1 = Drive has not detected any option modules, that is, there is only the base unit.		
	2	Reserved				
	3	FENA-21		1 = FENA-21 Two-port Ethernet adapter module included		
	4	FECA-01		1 = FECA-01 EtherCAT adapter module included		
	5	FPBA-01		1 = FPBA-01 PROFIBUS DP adapter module included		
	6	FCAN-01		1 = FCAN-01 CANopen adapter module included		
	$7 . .9$	Reserved				
	10	FSCA-01		1 = FSCA-01 Modbus/RTU adapter module included		
	11	FEIP-21		1 = FEIP-21 Two-port EtherNet/IP adapter module included		
	12	FMBT-21		1 = FMBT-21 Two-port Modbus/TCP adapter module included		
	13	Reserved				
	14	FPNO-21		1 = FPNO-21 Two-port PROFINET IO adapter module included		
	15	FEPL-02		1 = FEPL-02 Ethernet POWERLINK adapter module included		
	000h...FFFFh		Drive configuration			1 = 1
07.36	Drive configuration2		Shows the detected module configuration. See parameter 07.35 Drive configuration.			0000h

10 Standard DI, RO			Configuration of digital inputs and relay outputs.	
10.01	DI status		Displays the electrical status of digital inputs DI1...DI6. The activation/deactivation delays of the inputs (if any are specified) are ignored. Bits $0 \ldots 5$ reflect the status of DI1 ...DI6. Example: 0000000000010011b = DI5, DI2 and DI1 are on, DI3, DI4 and DI6 are off. This parameter is read-only.	-
	Bit	Name	Description	
	0	DI1	1 = Digital in	
	1	DI2	1 = Digital in	
	2	DI3	1 = Digital in	
	3	DI4	1 = Digital in	
	4	DI5	1 = Digital in	
	5	D16	1 = Digital in	
	$6 . .15$	Reserv		
	0000h.	FFFFh	Status for digital inputs.	1 = 1

No.	Name/Value	Description	Def/FbEq16
10.08	DI2 OFF delay	Defines the deactivation delay for digital input DI2. See parameter 10.07 DI2 ON delay.	0.00 s
	$0.00 \ldots 3000.00 \mathrm{~s}$	Deactivation delay for DI2.	$10=1 \mathrm{~s}$
10.09	DI3 ON delay *DI status **Delayed DI status *Electrical status of dig **Indicated by 10.02 D	Defines the activation delay for digital input DI3.	
	$0.00 \ldots 3000.00 \mathrm{~s}$	Activation delay for DI3.	$10=1 \mathrm{~s}$
10.10	DI3 OFF delay	Defines the deactivation delay for digital input DI3. See parameter 10.09 DI3 ON delay.	0.00 s
	$0.00 \ldots 3000.00 \mathrm{~s}$	Deactivation delay for DI3.	$10=1 \mathrm{~s}$
10.11	DI4 ON delay *DI status **Delayed DI status $t_{\mathrm{tn}}=10.11 \mathrm{DI} 4 \mathrm{ON} \text { de }$	Defines the activation delay for digital input DI4.	
	$0.00 \ldots 3000.00 \mathrm{~s}$	Activation delay for DI4.	$10=1 \mathrm{~s}$
10.12	DI4 OFF delay	Defines the deactivation delay for digital input DI4. See parameter 10.11 DI4 ON delay.	0.00 s
	$0.00 \ldots 3000.00 \mathrm{~s}$	Deactivation delay for DI4.	$10=1 \mathrm{~s}$

No.	Name/Value	Description	Def/FbEq16
10.13	*DI status **Delayed DI status	Defines the activation delay for digital input DI5.	$\begin{gathered} \hline 0.00 \mathrm{~s} \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \text { Time } \end{gathered}$
	$0.00 \ldots 3000.00 \mathrm{~s}$	Activation delay for DI5.	$10=1 \mathrm{~s}$
10.14	DI5 OFF delay	Defines the deactivation delay for digital input DI5. See parameter 10.13 DI5 ON delay.	0.00 s
	$0.00 \ldots 3000.00$ s	Deactivation delay for DI5.	$10=1 \mathrm{~s}$
10.15	DI6 ON delay *DI status **Delayed DI status $t_{\text {On }}=10.15 \mathrm{D} 16 \mathrm{ON}$ de $t_{\text {Off }}=10.16$ DI6 OFF *Electrical status of dig **Indicated by 10.02 D	Defines the activation delay for digital input DI6.	$\begin{gathered} \hline 0.00 \mathrm{~s} \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \text { Time } \end{gathered}$
	$0.00 \ldots 3000.00$ s	Activation delay for DI6.	$10=1 \mathrm{~s}$
10.16	DI6 OFF delay	Defines the deactivation delay for digital input DI6. See parameter 10.15 DI6 ON delay.	0.00 s
	$0.00 \ldots 3000.00 \mathrm{~s}$	Deactivation delay for DI6.	$10=1 \mathrm{~s}$
10.21	RO status	Status of relay outputs RO3...RO1.	-
	Bit Name Value 0		
	0 RO1	= energized, 0 = de-energized.	
	1 RO2	= energized, 0 = de-energized	
	2 RO3	= energized, 0 = de-energized	
	Reserved		
	0000h...FFFFh	Status of relay outputs.	1 = 1

No.	Name/Value
10.22	RO force selection

Bit	Name	Value
0	RO1	$1=$ Force RO1 to value of bit 0 of parameter 10.23 RO forced data. $(0=$ Normal mode $)$
1	RO2	$1=$ Force RO2 to value of bit 1 of parameter 10.23 RO forced data. $(0=$ Normal mode $)$
2	RO3	$1=$ Force RO3 to value of bit 2 of parameter 10.23 RO forced data. $(0=$ Normal mode $)$
$3 \ldots 15$	Reserved	

	$0000 \mathrm{~h} .$. FFFFh	Override selection for relay outputs.	$1=1$
10.23	$R O$ forced data	Contains the values of relay outputs that are used instead of the connected signals if selected in parameter 10.22 RO force selection. Bit 0 is the forced value for RO1.	

Bit	Name	Value
0	RO1	Force the value of this bit to RO1, if so defined in parameter 10.22 RO force selection.
1	RO2	Force the value of this bit to RO2, if so defined in parameter 10.22 RO force selection.
2	RO3	Force the value of this bit to RO3, if so defined in parameter 10.22 RO force selection.
$3 \ldots 15$	Reserved	

	0000h...FFFFh	Forced RO values.	1 = 1
10.24	RO1 source	Selects a drive signal to be connected to relay output RO1.	Ready run
	Not energized	Output is not energized.	0
	Energized	Output is energized.	1
	Ready run	Bit 1 of 06.11 Main status word (see page 209).	2
	Enabled	Bit 0 of 06.16 Drive status word 1 (see page 210).	4
	Started	Bit 5 of 06.16 Drive status word 1 (see page 210).	5
	Magnetized	Bit 1 of 06.17 Drive status word 2 (see page 211).	6
	Running	Bit 6 of 06.16 Drive status word 1 (see page 210).	7
	Ready ref	Bit 2 of 06.11 Main status word (see page 209).	8
	At setpoint	Bit 8 of 06.11 Main status word (see page 209).	9
	Reverse	Bit 2 of 06.19 Speed control status word (see page 212).	10
	Zero speed	Bit 0 of 06.19 Speed control status word (see page 212).	11
	Above limit	Bit 10 of 06.17 Drive status word 2 (see page 211).	12
	Warning	Bit 7 of 06.11 Main status word (see page 209).	13
	Fault	Bit 3 of 06.11 Main status word (see page 209).	14
	Fault (-1)	Inverted bit 3 of 06.11 Main status word (see page 209).	15
	Fault/Warning	Bit 3 of 06.11 Main status word OR bit 7 of 06.11 Main status word (see page 209).	16

No.	Name/Value	Description	Def/FbEq16
	Overcurrent	Fault 2310 Overcurrent has occurred.	17
	Overvoltage	Fault 3210 DC link overvoltage has occurred.	18
	Drive temp	Fault 2381 IGBT overload or 4110 Control board temperature or 4210 IGBT overtemperature or 4290 Cooling or 42 F1 IGBT temperature or 4310 Excess temperature or 4380 Excess temperature difference has occurred.	19
	Undervoltage	Fault 3220 DC link undervoltage has occurred.	20
	Motor temp	Fault 4981 External temperature 1 or 4982 External temperature 2 has occurred.	21
	Brake command	Bit 0 of 44.01 Brake control status (see page 373).	22
	Ext2 active	Bit 11 of 06.16 Drive status word 1 (see page 210).	23
	Remote control	Bit 9 of 06.11 Main status word (see page 209).	24
	Reserved		25... 26
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	27
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	28
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	29
	Reserved		30... 32
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	33
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	34
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	35
	Reserved		36... 38
	Start delay	Bit 13 of 06.17 Drive status word 2 (see page 211).	39
	RO/DIO control word bit0	Bit 0 of 10.99 RO/DIO control word (see page 224).	40
	RO/DIO control word bit1	Bit 1 of 10.99 RO/DIO control word (see page 224).	41
	RO/DIO control word bit2	Bit 2 of 10.99 RO/DIO control word (see page 224).	42
	Reserved		43... 44
	PFC1	Bit 0 of 76.01 PFC status (see page 403).	45
	PFC2	Bit 1 of 76.01 PFC status (see page 403).	46
	PFC3	Bit 2 of 76.01 PFC status (see page 403).	47
	PFC4	Bit 3 of 76.01 PFC status (see page 403).	48
	PFC5	Bit 3 of 76.01 PFC status (see page 403).	49
	PFC6	Bit 3 of 76.01 PFC status (see page 403).	50
	Event word 1	Event word $1=1$ if any bit of 04.40 Event word 1 (see page 204) is 1 , that is, if any warning, fault or pure event that has been defined with parameters $04.41 \ldots 04.71$ is on.	53
	User load curve	Bit 3 (Outside load limit) of 37.01 ULC output status word (see page 349).	61
	RO/DIO control word	For 10.24 RO1 source: Bit 0 (RO1) of 10.99 RO/DIO control word (see page 224). For 10.27 RO2 source: Bit 1 (RO2) of 10.99 RO/DIO control word (see page 224). For 10.30 RO3 source: Bit 2 (RO3) of 10.99 RO/DIO control word (see page 224).	62

No.	Name/Value	Description	Def/FbEq16
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
10.25	RO1 ON delay	Defines the activation delay for relay output RO1.	0.0 s
	Status of selected source RO status $\begin{aligned} & t_{\mathrm{On}}=10.25 \mathrm{RO} \mathrm{ON} \\ & t_{\mathrm{Off}}=10.26 \mathrm{RO} 1 \mathrm{OFF} \end{aligned}$		$\begin{gathered} - \\ 0 \\ 1 \\ \rightarrow_{\text {Time }} \\ 0 \end{gathered}$
	0.0 ... 3000.0 s	Activation delay for RO1.	$10=1 \mathrm{~s}$
10.26	RO1 OFF delay	Defines the deactivation delay for relay output RO1. See parameter 10.25 RO 1 ON delay.	0.0 s
	$0.0 \ldots 3000.0 \mathrm{~s}$	Deactivation delay for RO1.	$10=1 \mathrm{~s}$
10.27	RO2 source	Selects a drive signal to be connected to relay output RO2. For the available selections, see parameter 10.24 RO 1 source.	Running
10.28	RO2 ON delay	Defines the activation delay for relay output RO 2 .	0.0 s
	Status of selected source RO status $\begin{aligned} & t_{\mathrm{On}}=10.28 \mathrm{RO} 2 \mathrm{ON} \\ & t_{\mathrm{Off}}=10.29 \mathrm{RO} 2 \mathrm{OFF} \end{aligned}$		$\begin{gathered} 1 \\ -\quad 0 \\ 1 \\ - \\ - \\ \hline \end{gathered}$
	0.0 ... 3000.0 s	Activation delay for RO2.	$10=1 \mathrm{~s}$
10.29	RO2 OFF delay	Defines the deactivation delay for relay output RO2. See parameter 10.28 RO 2 ON delay.	0.0 s
	$0.0 \ldots 3000.0 \mathrm{~s}$	Deactivation delay for RO2.	$10=1 \mathrm{~s}$
10.30	RO3 source	Selects a drive signal to be connected to relay output RO3. For the available selections, see parameter 10.24 RO 1 source.	Fault (-1)

No.	Name/Value	Description	Def/FbEq16
11 Standard DIO, FI, FO		Configuration of the frequency input.	
11.21	D/5 configuration	Selects how digital input 5 is used.	Digital input
	Digital input	DI5 is used as a digital input.	0
	Frequency input	DI5 is used as a frequency input.	1
11.38	Freq in 1 actual value	Displays the value of frequency input 1 (via DI5 when it is used as a frequency input) before scaling. See parameter 11.42 Freq in 1 min . This parameter is read-only.	-
	0 ... 16000 Hz	Unscaled value of frequency input 1.	$1=1 \mathrm{~Hz}$
11.39	Freq in 1 scaled value	Displays the value of frequency input 1 (via DI5 when it is used as a frequency input) after scaling. See parameter 11.42 Freq in 1 min . This parameter is read-only.	-
	$\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$	Scaled value of frequency input 1 (D15).	$1=1$
11.42	Freq in 1 min	Defines the minimum for the frequency actually arriving at frequency input 1 (DI5 when it is used as a frequency input). The incoming frequency signal (11.38 Freq in 1 actual value) is scaled into an internal signal (11.39 Freq in 1 scaled value) by parameters $11.42 \ldots 11.45$ as follows:	0 Hz
	0 ... 16000 Hz	Minimum frequency of frequency input 1 (DI5).	$1=1 \mathrm{~Hz}$
11.43	Freq in 1 max	Defines the maximum for the frequency actually arriving at frequency input 1 (DI5 when it is used as a frequency input). See parameter 11.42 Freq in $1 \mathrm{~min} . \mathrm{v}$	16000 Hz
	0 ... 16000 Hz	Maximum frequency for frequency input 1 (DI5).	$1=1 \mathrm{~Hz}$
11.44	Freq in 1 at scaled min	Defines the value that is required to correspond internally to the minimum input frequency defined by parameter 11.42 Freq in 1 min . See diagram at parameter 11.42 Freq in 1 min .	0.000
	$\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$	Value corresponding to minimum of frequency input 1.	$1=1$

No.	Name/Value	Description	Def/FbEq16
11.45	Freq in 1 at scaled max	Defines the value that is required to correspond internally to the maximum input frequency defined by parameter 11.43 Freq in 1 max. See diagram at parameter 11.42 Freq in 1 min.	$1500.000 ;$ $(9500.000$ b0 $)$
	$-32768.000 \ldots$ 32767.000	Value corresponding to maximum of frequency input 1.	$1=1$

12 Standard AI			Configuration of standard analog inputs.	
12.02	Al force selection		The true readings of the analog inputs can be overridden, for example, for testing purposes. A forced value parameter is provided for each analog input, and its value is applied whenever the corresponding bit in this parameter is 1. Note: Al filter times (parameters 12.16 Al1 filter time and 12.26 AI2 filter time) have no effect on forced AI values (parameters 12.13 Al1 forced value and 12.23 A/2 forced value). Note: Boot and power cycle reset the force selections (parameters 12.02 and 12.03).	0000h
		Name	Value	
	0	Al1	1 = Force Al1 to value of parameter 12.13 Al1 forced value.	
		Al2	1 = Force Al2 to value of parameter 12.23 Al2 forced value.	
	2... 15	Reserved		
	0000h...FFFFh		Forced values selector for analog inputs Al 1 and Al 2 .	1 = 1
12.03	Al supervision function		Selects how the drive reacts when an analog input signal moves out of the minimum and/or maximum limits specified for the input. The supervision applies a margin of 0.5 V or 1.0 mA to the limits. For example, if the maximum limit for the input is 7.000 V , the maximum limit supervision activates at 7.500 V . The inputs and the limits to be observed are selected by parameter 12.04 Al supervision selection.	No action
	No action		No action taken.	0
	Fault		Drive trips on 80A0 Al supervision.	1
	Warning		Drive generates an A8A0 Al supervision warning.	2
	Last speed		Drive generates a warning (A8A0 Al supervision) and freezes the speed (or frequency) to the level the drive was operating at. The speed/frequency is determined on the basis of actual speed using 850 ms low-pass filtering. \qquad WARNING! Make sure that it is safe to continue operation in case of a communication break.	3
	Speed ref safe		Drive generates a warning (A8A0 AI supervision) and sets the speed to the speed defined by parameter 22.41 Speed ref safe (or 28.41 Frequency ref safe when frequency reference is being used). WARNING! Make sure that it is safe to continue operation in case of a communication break.	4

No.	Name/Value	Description	Def/FbEq16
12.04	Al supervision selection	Specifies the analog input limits to be supervised. See parameter 12.03 Al supervision function.	0000h
	Bit \quad Name	Description	
	0 Al1 < MIN 1	1 = Minimum limit supervision of Al1 active.	
	1 Al1 > MAX	1 = Maximum limit supervision of Al1 active.	
	2 Al2 < MIN	1 = Minimum limit supervision of Al2 active.	
	3 Al2 > MAX	1 = Maximum limit supervision of Al2 active.	
	$4 \ldots 15$ Reserved		
	0000h...FFFFh	Activation of analog input supervision.	1 = 1
12.11	Al1 actual value	Displays the value of analog input Al1 in mA or V (depending on whether the input is set to current or voltage with parameter 12.15 Al1 unit selection). This parameter is read-only.	-
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Value of analog input Al1.	$1000=1$ unit
12.12	AI1 scaled value	Displays the value of analog input Al1 after scaling. See parameters 12.19 Al1 scaled at Al1 min and 12.20 Al1 scaled at Al1 max. This parameter is read-only.	-
	$\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$	Scaled value of analog input Al1.	$1=1$
12.13	Al1 forced value	Forced value that can be used instead of the true reading of the input. See parameter 12.02 Al force selection.	-
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Forced value of analog input Al1.	$1000=1$ unit
12.15	Al1 unit selection	Selects the unit for readings and settings related to analog input Al1.	V
	V	Volts.	2
	mA	Milliamperes.	10

No.	Name/Value	Description	Def/FbEq16
12.16	Al1 filter time	Defines the filter time constant for analog input Al1. Note: The signal is also filtered due to the signal interface hardware (approximately 0.25 ms time constant). This cannot be changed by any parameter.	0.100 s
	0.000...30.000 s	Filter time constant.	$1000=1 \mathrm{~s}$
12.17	Al1 min	Defines the minimum site value for analog input Al1. Set the value actually sent to the drive when the analog signal from plant is wound to its minimum setting. See also parameter 12.19 A/1 scaled at Al1 min.	$\begin{aligned} & 4.000 \mathrm{~mA} \text { or } \\ & 0.000 \mathrm{~V} \end{aligned}$
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Minimum value of Al1.	$1000=1$ unit
12.18	Al1 max	Defines the maximum site value for analog input Al1. Set the value actually sent to the drive when the analog signal from plant is wound to its maximum setting. See also parameter 12.19 Al1 scaled at Al1 min.	$\begin{aligned} & 20.000 \mathrm{mAor} \\ & 10.000 \mathrm{~V} \end{aligned}$
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Maximum value of Al1.	$1000=1$ unit

No.	Name/Value	Description	Def/FbEq16
12.19	Al1 scaled at Al1 min	Defines the real internal value that corresponds to the minimum analog input Al1 value defined by parameter 12.17 Al1 min. (Changing the polarity settings of 12.19 and 12.20 can effectively invert the analog input.)	0.000
	$\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$	Real value corresponding to minimum Al 1 value.	$1=1$
12.20	Al1 scaled at Al1 max	Defines the real internal value that corresponds to the maximum analog input Al1 value defined by parameter 12.18 Al1 max. See the drawing at parameter 12.19 Al1 scaled at Al1 min.	$\begin{aligned} & \hline 50.000 ; \\ & 60.000 \\ & (95.20 \text { b0 }) \end{aligned}$
	$\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$	Real value corresponding to maximum Al1 value.	1 = 1
12.21	AI2 actual value	Displays the value of analog input Al2 in mA or V (depending on whether the input is set to current or voltage with parameter 12.25 A/2 unit selection). This parameter is read-only.	-
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Value of analog input Al2.	$1000=1$ unit
12.22	AI2 scaled value	Displays the value of analog input Al 2 after scaling. See parameters 12.29 Al2 scaled at Al2 min and 12.101 Al1 percent value. This parameter is read-only.	-
	$\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$	Scaled value of analog input Al2.	$1=1$
12.23	AI2 forced value	Forced value that can be used instead of the true reading of the input. See parameter 12.02 AI force selection.	-
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Forced value of analog input Al2.	$1000=1$ unit
12.25	AI2 unit selection	Selects the unit for readings and settings related to analog input Al2.	$m A$
	V	Volts.	2
	mA	Milliamperes.	10
12.26	AI2 filter time	Defines the filter time constant for analog input Al2. See parameter 12.16 Al1 filter time.	0.100 s
	0.000...30.000 s	Filter time constant.	$1000=1 \mathrm{~s}$

\qquad

No.	Name/Value	Description	Def/FbEq16
12.27	Al2 min	Defines the minimum site value for analog input Al 2 . Set the value actually sent to the drive when the analog signal from plant is wound to its minimum setting.	$\begin{aligned} & 4.000 \mathrm{~mA} \text { or } \\ & 0.000 \mathrm{~V} \end{aligned}$
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Minimum value of Al2.	$1000=1$ unit
12.28	AI2 max	Defines the maximum site value for analog input AI2. Set the value actually sent to the drive when the analog signal from plant is wound to its maximum setting.	$\begin{aligned} & 20.000 \mathrm{~mA} \text { or } \\ & 10.000 \mathrm{~V} \end{aligned}$
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} \\ & \text { or } 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Maximum value of Al2.	$1000=1$ unit
12.29	Al2 scaled at AI2 min	Defines the real value that corresponds to the minimum analog input Al2 value defined by parameter 12.27 A/2 min. (Changing the polarity settings of 12.29 and 12.101 can effectively invert the analog input.)	0.000
	$\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$	Real value corresponding to minimum $\mathrm{Al2}$ value.	$1=1$
12.30	Al2 scaled at AI2 max	Defines the real value that corresponds to the minimum analog input Al2 value defined by parameter 12.28 Al2 max. See the drawing at parameter of 12.29 AI2 scaled at Al2 min.	50.000
	$\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$	Real value corresponding to maximum $\mathrm{Al2}$ value.	$1=1$
12.101	Al1 percent value	Value of analog input Al1 in percent of Al1 scaling (12.18 Al1 max-12.17 Al1 min).	-
	0.00...100.00\%	Al1 value	$100=1 \%$
12.102	Al2 percent value	Value of analog input Al2 in percent of Al2 scaling (12.28 A/2 max - 12.27 A/2 min).	-
	0.00...100.00\%	$\mathrm{Al2}$ value	$100=1 \%$

No.	Name/Value	Description	Def/FbEq16
13 Standard AO		Configuration of standard analog outputs.	
13.02	$A O$ force selection	The source signals of the analog outputs can be overridden, for example, for testing purposes. A forced value parameter is provided for each analog output, and its value is applied whenever the corresponding bit in this parameter is 1 . Note: Boot and power cycle reset the force selections (parameters 13.02 and 13.11).	0000h
	Bit \quad Name ${ }^{\text {Bit }}$ Valu	Value	
	0 AO1 $1=\mathrm{F}$	1 = Force AO1 to value of parameter 13.13 AO1 forced value. $(0=$ Normal mode)	
	1 AO2 $1=\mathrm{F}$	1 = Force AO2 to value of parameter 13.23 AO2 forced value. ($0=$ Normal mode)	
	$2 \ldots 15$ Reserved		
	0000h...FFFFh	Forced values selector for analog outputs AO 1 and AO 2.	1 = 1
13.11	AO1 actual value	Displays the value of AO 1 in mA or V (depending on whether the input is set to current or voltage with parameter 13.15 AO1 unit selection). This parameter is read-only.	-
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} / \\ & 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$	Value of AO1.	$1=1 \mathrm{~mA}$
13.12	AO1 source	Selects a signal to be connected to analog output AO1. Alternatively, sets the output to excitation mode to feed a constant current to a temperature sensor.	Output frequency
	Zero	None.	0
	Motor speed used	01.01 Motor speed used (page 199).	1
	Reserved		2
	Output frequency	01.06 Output frequency (page 199).	3
	Motor current	01.07 Motor current (page 199).	4
	Motor current \% of motor nominal	01.08 Motor current \% of motor nom (page 199).	5
	Motor torque	01.10 Motor torque (page 199).	6
	DC voltage	01.11 DC voltage (page 199).	7
	Output power	01.14 Output power (page 200).	8
	Reserved		9
	Speed ref ramp in	23.01 Speed ref ramp input (page 276).	10
	Speed ref ramp out	23.02 Speed ref ramp output (page 276).	11
	Speed ref used	24.01 Used speed reference (page 280).	12
	Reserved		13
	Freq ref used	28.02 Frequency ref ramp output (page 291).	14
	Reserved		15
	Process PID out	40.01 Process PID output actual (page 353).	16
	Reserved		17... 19
	Temp sensor 1 excitation	The output is used to feed an excitation current to the temperature sensor 1, see parameter 35.11 Temperature 1 source. See also section Motor thermal protection (page 177).	20

No.	Name/Value	Description	Def/FbEq16
	Temp sensor 2 excitation	The output is used to feed an excitation current to the temperature sensor 2, see parameter 35.21 Temperature 2 source. See also section Motor thermal protection (page 177).	21
	Reserved		21... 25
	Abs motor speed used	01.61 Abs motor speed used (page 201).	26
	Abs motor speed \%	01.62 Abs motor speed \% (page 202).	27
	Abs output frequency	01.63 Abs output frequency (page 202).	28
	Reserved		29
	Abs motor torque	01.64 Abs motor torque (page 202).	30
	Abs output power	01.65 Abs output power (page 202).	31
	Abs motor shaft power	01.68 Abs motor shaft power (page 202).	32
	External PID1 out	71.01 External PID act value ((page 400).	33
	Reserved		34... 36
	AO1 data storage	13.91 AO1 data storage (page 236).	37
	AO2 data storage	13.92 AO2 data storage (page 236).	38
	Other	Source selection (see Terms and abbreviations on page 196).	-
13.13	A01 forced value	Forced value that can be used instead of the selected output signal. See parameter 13.02 AO force selection.	0.000 mA
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} / \\ & 0.000 \ldots .11 .000 \mathrm{~V} \end{aligned}$	Forced value for AO1.	$1=1$ unit
13.15	AO1 unit selection	Selects the unit for readings and settings related to analog input AO1.	$m A$
	V	Volts.	2
	mA	Milliamperes.	10
13.16	AO1 filter time	Defines the filtering time constant for analog output AO1. $\mathrm{O}=\mathrm{I} \times\left(1-\mathrm{e}^{-t / \mathrm{T}}\right)$ I = filter input (step) $\mathrm{O}=$ filter output $t=$ time $\mathrm{T}=$ filter time constant	0.100 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Filter time constant.	$1000=1 \mathrm{~s}$

No.	Name/Value	Description	Def/FbEq16
13.17	AO1 source min	Defines the real minimum value of the signal (selected by parameter 13.12 AO1 source) that corresponds to the minimum required AO1 output value (defined by parameter 13.19 AO1 out at AO1 src min). Programming 13.17 as the maximum value and 13.18 as the minimum value inverts the output.	0.0

No.	Name/Value		Description			Def/FbEq16
	AO has automatic scaling. Every time the source for the AO is changed, the scaling range is changed accordingly. User given minimum and maximum values override the automatic values.					
		13.12 AO1 source, 13.22 AO2 source		13.17 AO1 source min, 13.27 AO2 source min	13.18 AO1 source max, 13.28 AO2 source max	
	0	Zero		N/A (Output is constant zero.)		
	1	Motor speed used		0	46.01 Speed scaling	
	3	Output frequency		0	46.02 Frequency scaling	
	4	Motor current		0	Max. value of 30.17 Maximum current	
	5	Motor current \% of motor nominal		0\%	100\%	
	6	Motor torque		0	46.03 Torque scaling	
	7	DC voltage		Min. value of 01.11 DC voltage	Max. value of 01.11 DC voltage	
	8	Output power		0	46.04 Power scaling	
	10	Speed ref ramp in		0	46.01 Speed scaling	
	11	Speed ref ramp out		0	46.01 Speed scaling	
	12	Speed ref used		0	46.01 Speed scaling	
	14	Freq ref used		0	46.02 Frequency scaling	
	16	Process PID out		Min. value of 40.01 Process PID output actual	Max. value of 40.01 Process PID output actual	
	20	Temp sensor 1 excitation		N/A (Analog output is not scaled; it is determined by the sensor's triggering voltage.)		
	21	Temp sensor 2 excitation				
	26	Abs motor speed used		0	46.01 Speed scaling	
	27	Abs motor speed \%		0	46.01 Speed scaling	
	28	Abs output frequency		0	46.02 Frequency scaling	
	30	Abs motor torque		0	46.03 Torque scaling	
	31	Abs output power		0	46.04 Power scaling	
	32	Abs motor shaft power		0	46.04 Power scaling	
	33	External PID1 out		Min. value of 71.01 External PID act value	Max. value of 71.01 External PID act value	
		Other		Min. value of the selected parameter	Max. value of the selected parameter	
	-32768.0..32767.0		Real signal value corresponding to minimum AO1 output value.			$1=1$
13.18	AO1 source max		Defines the real maximum value of the signal (selected by parameter 13.12 AO1 source) that corresponds to the maximum required AO1 output value (defined by parameter 13.20 AO1 out at AO1 src max). See parameter 13.17 AO1 source min.			$\begin{aligned} & \hline 50.0 ; \\ & 60.0 \\ & (95.20 \mathrm{~b} 0) \end{aligned}$
	-32768.0..32767.0		Real signal value corresponding to maximum AO1 output value.			$1=1$
13.19	AO1 out at AO1 src min		Defines the minimum output value for analog output AO1. See also drawing at parameter 13.17 AO1 source min.			0.000 mA
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} / \\ & 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$		Minimum AO1 output value.			$1000=1$ unit
13.20	AO1 out at AO1 src max		Defines the maximum output value for analog output AO1. See also drawing at parameter 13.17 AO1 source min.			20.000 mA
	$\begin{aligned} & 0.000 \ldots 22.000 \mathrm{~mA} / \\ & 0.000 \ldots 11.000 \mathrm{~V} \end{aligned}$		Maximum AO1 output value.			$1000=1$ unit

No.	Name/Value	Description	Def/FbEq16
13.21	AO2 actual value	Displays the value of AO 2 in mA . This parameter is read-only.	
	$0.000 \ldots 22.000 \mathrm{~mA}$	Value of AO2.	$1000=1 \mathrm{~mA}$
13.22	AO2 source	Selects a signal to be connected to analog output AO2. Alternatively, sets the output to excitation mode to feed a constant current to a temperature sensor. For the selections, see parameter 13.12 AO1 source.	Motor current
13.23	AO2 forced value	Forced value that can be used instead of the selected output signal. See parameter 13.02 AO force selection.	0.000 mA
	0.000 ... 22.000 mA	Forced value for AO2.	$1000=1 \mathrm{~mA}$
13.26	AO2 filter time	Defines the filtering time constant for analog output AO2. See parameter 13.16 AO1 filter time.	0.100 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Filter time constant.	$1000=1 \mathrm{~s}$
13.27	AO2 source min	Defines the real minimum value of the signal (selected by parameter 13.22 AO2 source) that corresponds to the minimum required AO2 output value (defined by parameter 13.29 AO2 out at AO2 src min). See parameter 13.17 AO1 source min about the AO automatic scaling. Programming 13.27 as the maximum value and 13.28 as the minimum value inverts the output.	0.0
	-32768.0...32767.0	Real signal value corresponding to minimum AO2 output value.	$1=1$

No.	Name/Value	Description	Def/FbEq16
13.28	AO2 source max	Defines the real maximum value of the signal (selected by parameter 13.22 AO2 source) that corresponds to the maximum required AO2 output value (defined by parameter 13.30 AO2 out at AO2 src max). See parameter 13.27 AO2 source min. See parameter 13.17 AO1 source min about the AO automatic scaling.	2.2
	-32768.0.. 32767.0	Real signal value corresponding to maximum AO2 output value.	$1=1$
13.29	AO2 out at AO2 src min	Defines the minimum output value for analog output AO2. See also drawing at parameter 13.27 AO2 source min.	4.000 mA
	$0.000 \ldots 22.000 \mathrm{~mA}$	Minimum AO2 output value.	$1000=1 \mathrm{~mA}$
13.30	AO2 out at AO2 src max	Defines the maximum output value for analog output AO2. See also drawing at parameter 13.27 AO2 source min.	20.000 mA
	$0.000 \ldots 22.000 \mathrm{~mA}$	Maximum AO2 output value.	$1000=1 \mathrm{~mA}$
13.91	A01 data storage	Storage parameter for controlling analog output AO1, for example, through the embedded fieldbus interface. In parameter 13.12 AO1 source, select AO1 data storage. Then set this parameter as the target of the incoming value data. With the embedded fieldbus interface, simply set the target selection parameter of that particular data (58.101 ...58.114) to AO1 data storage.	0.00
	-327.68... 327.67	Storage parameter for AO1.	$100=1$
13.92	AO2 data storage	Storage parameter for controlling analog output AO2, for example, through the embedded fieldbus interface. In parameter 13.22 AO2 source, select AO2 data storage. Then set this parameter as the target of the incoming value data. With the embedded fieldbus interface, simply set the target selection parameter of that particular data (58.101 ...58.114) to AO2 data storage.	0.00
	-327.68... 327.67	Storage parameter for AO 2.	$100=1$

15 I/O extension module	Configuration of the I/O extension module installed in slot 2. See also section Programmable I/O extensions (page 122). Note: The contents of the parameter group vary according to the selected I/O extension module type.	
15.01	Extension module type	Activates (and specifies the type of) I/O extension module. If the value is None, when an extension module has been installed and the drive is powered, the drive automatically sets the value to the type it has detected (= value of parameter 15.02 Detected extension module); otherwise warning A7AB Extension I/O configuration failure is generated and you have to set the value of this parameter manually.

No.	Name/Value	Description	Def/FbEq16
15.02	Detected extension module	I/O extension module detected on the drive.	None
	None	Inactive.	0
	CMOD-01	CMOD-01 multifunction extension module (external $24 \mathrm{~V} \mathrm{AC/DC}$ and digital I/O).	1
	CMOD-02	CMOD-02 multifunction extension module (external $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{and} \mathrm{isolated} \mathrm{PTC} \mathrm{interface)}$.	2
	CHDI-01	CHDI-01 115/230 V digital input extension module.	3
	CPTC-02	CPTC-02 extension module (external 24 V and ATEX certified PTC interface).	4
15.03	DI status	Displays the status of the digital inputs DI7...DI12 on the extension module Bit 0 indicates the status of DI7. Example: 001001b = DI7 and DI10 are on, the rest are off. This parameter is read-only.	-
	Bit ${ }^{\text {Bit }}$ Name	Description	
	0 DI7	1 = Digital input 7 is ON.	
	1 DI8	1 = Digital input 8 is ON.	
	2 D19	1 = Digital input 9 is ON.	
	2 DI10	1 = Digital input 10 is ON.	
	4 DI11	1 = Digital input 11 is ON.	
	5 DI12	1 = Digital input 12 is ON.	
	$6 \ldots 15$ Reserved		
	0000h...FFFFh	Status of digital input/outputs.	1 = 1
15.04	RO/DO status	Displays the status of the relay outputs RO4 and RO5 and digital output DO1 on the extension module. Bits $0 \ldots 1$ indicates the status of RO4...RO5; bit 5 indicates the status of DO1. Example: $100101 \mathrm{~b}=\mathrm{RO} 4$ is on, RO5 is off. and DO1 is on. This parameter is read-only.	-
	Bit ${ }^{\text {Bit }}$ Name	Description	
	0 RO4	1 = Relay output 4 is ON.	
		1 = Relay output 5 is ON	
	2...4 Reserved		
	5 DO1 6	1 = Digital output 1 is ON.	
	$6 \ldots 15$ Reserved		
	0000h...FFFFh	Status of relay/digital outputs.	1 = 1

No.	Name/Value		Description	Def/FbEq16
15.05	RO/DO force selection		The electrical statuses of the relay/digital outputs can be overridden, for example, for testing purposes. A bit in parameter 15.06 RO/DO forced data is provided for each relay or digital output, and its value is applied whenever the corresponding bit in this parameter is 1 . Note: Boot and power cycle reset the force selections (parameters 15.05 and 15.06).	0000h
	Bit	Name V	Value	
	0	RO4 1	1 = Force RO4 to value of bit 0 of parameter 15.06 RO/DO forced data.	
	1	RO5 1	1 = Force RO5 to value of bit 1 of parameter 15.06 RO/DO forced data.	
	2... 4	Reserved		
	5	DO1 1 = Force DO1 to value of bit 5 of parameter 15.06 RO/DO forced data. Reserved		
	6... 15			
	0000h...FFFFh		Override selection for relay/digital outputs.	1 = 1
15.06	RO/DO forced data		Allows the data value of a forced relay or digital output to be changed from 0 to 1 . It is only possible to force an output that has been selected in parameter 15.05 RO/DO force selection. Bits $0 \ldots 1$ are the forced values for $\mathrm{RO} 4 \ldots \mathrm{RO} 5$; bit 5 is the forced value for DO1.	0000h
	Bit	Name	Description	
	0	RO4	Force the value of this bit to RO4, if so defined in parameter 15.05 RO/DO force selection.	
	1	RO5	Force the value of this bit to RO5, if so defined in parameter 15.05 RO/DO force selection.	
	2... 4	Reserved		
	5	DO1	Force the value of this bit to DO1 if so defined in parameter 15.05 RO/DO force selection.	
	6... 15	Reserved		

$0000 \mathrm{~h} .$. FFFFh	Forced values of relay/digital outputs.	$1=1$
RO4 source	Selects a drive signal to be connected to relay output RO4.	Not energized
Not energized	Output is not energized.	0
Energized	Output is energized.	1
Ready run	Bit 1 of 06.11 Main status word (see page 209).	2
Reserved		3
Enabled	Bit 0 of 06.16 Drive status word 1 (see page 210).	4
Started	Bit 5 of 06.16 Drive status word 1 (see page 210).	5
Magnetized	Bit 1 of 06.17 Drive status word 2 (see page 211).	6
Running	Bit 6 of 06.16 Drive status word 1 (see page 210).	7
Ready ref	Bit 2 of 06.11 Main status word (see page 209).	8
At setpoint	Bit 8 of 06.11 Main status word (see page 209).	9
Reverse	Bit 2 of 06.19 Speed control status word (see page 212).	10
Zero speed	Bit 0 of 06.19 Speed control status word (see page 212).	11

No.	Name/Value	Description	Def/FbEq16
	Above limit	Bit 10 of 06.17 Drive status word 2 (see page 211).	12
	Warning	Bit 7 of 06.11 Main status word (see page 209).	13
	Fault	Bit 3 of 06.11 Main status word (see page 209).	14
	Fault (-1)	Inverted bit 3 of 06.11 Main status word (see page 209).	15
	Fault/Warning	Bit 3 of 06.11 Main status word OR bit 7 of 06.11 Main status word (see page 209).	16
	Overcurrent	Fault 2310 Overcurrent has occurred.	17
	Overvoltage	Fault 3210 DC link overvoltage has occurred.	18
	Drive temp	Fault 2381 IGBT overload or 4110 Control board temperature or 4210 IGBT overtemperature or 4290 Cooling or $42 F 1$ IGBT temperature or 4310 Excess temperature or 4380 Excess temperature difference has occurred.	19
	Undervoltage	Fault 3220 DC link undervoltage has occurred.	20
	Motor temp	Fault 4981 External temperature 1 or 4982 External temperature 2 has occurred.	21
	Brake command	Bit 0 of 44.01 Brake control status (see page 373).	22
	Ext2 active	Bit 11 of 06.16 Drive status word 1 (see page 210).	23
	Remote control	Bit 9 of 06.11 Main status word (see page 209).	24
	Reserved		25... 26
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	27
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	28
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	29
	Reserved		30... 32
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	33
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	34
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	35
	Reserved		36... 38
	Start delay	Bit 13 of 06.17 Drive status word 2 (see page 211).	39
	RO/DIO control word bit0	Bit 0 of 10.99 RO/DIO control word (see page 224).	40
	RO/DIO control word bit1	Bit 1 of 10.99 RO/DIO control word (see page 224).	41
	RO/DIO control word bit2	Bit 2 of 10.99 RO/DIO control word (see page 224).	42
	Reserved		43... 44
	PFC1	Bit 0 of 76.01 PFC status (see page 403).	45
	PFC2	Bit 1 of 76.01 PFC status (see page 403).	46
	PFC3	Bit 2 of 76.01 PFC status (see page 403).	47
	PFC4	Bit 3 of 76.01 PFC status (see page 403).	48
	PFC5	Bit 4 of 76.01 PFC status (see page 403).	49
	PFC6	Bit 5 of 76.01 PFC status (see page 403).	50
	Reserved		51... 52

No.	Name/Value	Description	Def/FbEq16
	Event word 1	Event word $1=1$ if any bit of 04.40 Event word 1 (see page 204) is 1 , that is, if any warning, fault or pure event that has been defined with parameters $04.41 \ldots 04.71$ is on.	53
	User load curve	Bit 3 (Outside load limit) of 37.01 ULC output status word (see page 349).	61
	RO/DIO control word	For 15.07 RO4 source: Bit 3 (RO4) of 10.99 RO/DIO control word (see page 224). For 15.10 RO5 source: Bit 4 (RO5) of 10.99 RO/DIO control word (see page 224).	62
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
15.08	RO4 ON delay Status of selected source RO status $\begin{aligned} & t_{\mathrm{On}}=15.08 \mathrm{RO} 4 \mathrm{ON} \mathrm{~d} \\ & t_{\mathrm{Off}}=15.09 \mathrm{RO} 4 \mathrm{OFF} \end{aligned}$	Defines the activation delay for relay output RO4.	$\begin{gathered} \hline 0.0 \mathrm{~s} \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \text { Time } \end{gathered}$
	$0.0 \ldots 3000.0$ s	Activation delay for RO4.	$10=1 \mathrm{~s}$
15.09	RO4 OFF delay	Defines the deactivation delay for relay output RO4. See parameter 15.08 RO4 ON delay.	0.0 s
	$0.0 \ldots 3000.0$ s	Deactivation delay for RO4.	$10=1 \mathrm{~s}$
15.10	RO5 source	Selects a drive signal to be connected to relay output RO5. For the available selections, see parameter 15.07 RO4 source.	Not energized
15.11	RO5 ON delay Status of selected source RO status $\begin{aligned} & t_{\mathrm{On}}=15.11 \mathrm{RO} 5 \mathrm{ON} \mathrm{~d} \\ & t_{\mathrm{Off}}=15.12 \mathrm{RO} 5 \mathrm{OFF} \end{aligned}$	Defines the activation delay for relay output RO5.	$\begin{gathered} \hline 0.0 \mathrm{~s} \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ \text { Time } \end{gathered}$
	$0.0 \ldots 3000.0$ s	Activation delay for RO5.	$10=1 \mathrm{~s}$
15.12	RO5 OFF delay	Defines the deactivation delay for relay output RO5. See parameter 15.11 RO5 ON delay.	0.0 s
	0.0... 3000.0 s	Deactivation delay for RO5.	$10=1 \mathrm{~s}$
15.22	D01 configuration	Selects how DO1 is used.	Digital output
	Digital output	DO1 is used as a digital output.	0

No.	Name/Value	Description	Def/FbEq16
	Frequency output	DO1 is used as a frequency output.	2
15.23	DO1 source	Selects a drive signal to be connected to digital output DO1 when 15.22 DO1 configuration is set to Digital output.	Not energized
	Not energized	Output is not energized.	0
	Energized	Output is energized.	1
	Ready run	Bit 1 of 06.11 Main status word (see page 209).	2
	Reserved		3
	Enabled	Bit 0 of 06.16 Drive status word 1 (see page 210).	4
	Started	Bit 5 of 06.16 Drive status word 1 (see page 210).	5
	Magnetized	Bit 1 of 06.17 Drive status word 2 (see page 211).	6
	Running	Bit 6 of 06.16 Drive status word 1 (see page 210).	7
	Ready ref	Bit 2 of 06.11 Main status word (see page 209).	8
	At setpoint	Bit 8 of 06.11 Main status word (see page 209).	9
	Reverse	Bit 2 of 06.19 Speed control status word (see page 212).	10
	Zero speed	Bit 0 of 06.19 Speed control status word (see page 212).	11
	Above limit	Bit 10 of 06.17 Drive status word 2 (see page 211).	12
	Warning	Bit 7 of 06.11 Main status word (see page 209).	13
	Fault	Bit 3 of 06.11 Main status word (see page 209).	14
	Fault (-1)	Inverted bit 3 of 06.11 Main status word (see page 209).	15
	Fault/Warning	Bit 3 of 06.11 Main status word OR bit 7 of 06.11 Main status word (see page 209).	16
	Overcurrent	Fault 2310 Overcurrent has occurred.	17
	Overvoltage	Fault 3210 DC link overvoltage has occurred.	18
	Drive temp	Fault 2381 IGBT overload or 4110 Control board temperature or 4210 IGBT overtemperature or 4290 Cooling or 42 F1 IGBT temperature or 4310 Excess temperature or 4380 Excess temperature difference has occurred.	19
	Undervoltage	Fault 3220 DC link undervoltage has occurred.	20
	Motor temp	Fault 4981 External temperature 1 or 4982 External temperature 2 has occurred.	21
	Brake command	Bit 0 of 44.01 Brake control status (see page 373).	22
	Ext2 active	Bit 11 of 06.16 Drive status word 1 (see page 210).	23
	Remote control	Bit 9 of 06.11 Main status word (see page 209).	24
	Reserved		25... 26
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	27
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	28
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	29
	Reserved		30... 32
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	33
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	34
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	35
	Reserved		36... 38
	Start delay	Bit 13 of 06.17 Drive status word 2 (see page 211).	39

No.	Name/Value	Description	Def/FbEq16
	RO/DIO control word bit0	Bit 0 of 10.99 RO/DIO control word (see page 224).	40
	RO/DIO control word bit1	Bit 1 of 10.99 RO/DIO control word (see page 224).	41
	RO/DIO control word bit2	Bit 2 of 10.99 RO/DIO control word (see page 224).	42
	Reserved	Hint: To access bits 3, 4, and 8 of 10.99 RO/DIO control word (see page 224), use selection 53 (Other [bit).	43... 44
	PFC1	Bit 0 of 76.01 PFC status (see page 403).	45
	PFC2	Bit 1 of 76.01 PFC status (see page 403).	46
	PFC3	Bit 2 of 76.01 PFC status (see page 403).	47
	PFC4	Bit 3 of 76.01 PFC status (see page 403).	48
	PFC5	Bit 4 of 76.01 PFC status (see page 403).	49
	PFC6	Bit 5 of 76.01 PFC status (see page 403).	50
	Reserved		51... 52
	Event word 1	Event word $1=1$ if any bit of 04.40 Event word 1 (see page 204) is 1 , that is, if any warning, fault or pure event that has been defined with parameters $04.41 \ldots 04.71$ is on.	53
	User load curve	Bit 3 (Outside load limit) of 37.01 ULC output status word (see page 349).	61
	RO/DIO control word	For 15.23 DO1 source: Bit 8 (DIO1) of 10.99 RO/DIO control word (see page 224).	62
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
15.24	D01 ON delay Status of selected source DO status $\begin{aligned} & t_{\mathrm{On}}=15.24 \mathrm{DO} 1 \mathrm{ON} \\ & t_{\mathrm{Off}}=15.25 \mathrm{DO} 1 \mathrm{OFF} \end{aligned}$	Defines the activation delay for digital output DO1 when 15.22 DO1 configuration is set to Digital output.	0.0 s 1 1 - 0 Time
	$0.0 \ldots 3000.0$ s	Activation delay for DO1.	$10=1 \mathrm{~s}$
15.25	D01 OFF delay	Defines the deactivation delay for relay output DO1 when 15.22 DO1 configuration is set to Digital output. See parameter 15.24 DO1 ON delay.	0.0 s
	$0.0 \ldots 3000.0$ s	Deactivation delay for DO1.	$10=1 \mathrm{~s}$
15.32	Freq out 1 actual value	Displays the value of frequency output 1 at digital output DO1 when 15.22 DO1 configuration is set to Frequency output. This parameter is read-only.	-
	$0 \ldots 16000 \mathrm{~Hz}$	Value of frequency output 1.	1 = 1 Hz

$\left.\begin{array}{|l|l|l|}\hline \text { No. } & \text { Name/Value } & \text { Description } \\ \hline \mathbf{1 5 . 3 3} & \text { Freq out 1 source } & \begin{array}{l}\text { Selects a signal to be connected to digital output DO1 when } \\ \text { 15.22 DO1 configuration is set to Frequency output. } \\ \text { Alternatively, sets the output to excitation mode to feed a } \\ \text { constant current to a temperature sensor. }\end{array}\end{array} \begin{array}{l}\text { Motor speed } \\ \text { used }\end{array}\right]$.

No.	Name/Value	Description	Def/FbEq16
15.34	Freq out 1 src min	Defines the real value of the signal (selected by parameter 15.33 Freq out 1 source) that corresponds to the minimum value of frequency output 1 (defined by parameter 15.36 Freq out 1 at src min). This applies when 15.22 DO1 configuration is set to Frequency output.	0.000
	$\begin{aligned} & \hline-32768.000 \ldots \\ & 32767.000 \end{aligned}$	Real signal value corresponding to minimum value of frequency output 1 .	$1=1$
15.35	Freq out 1 src max	Defines the real value of the signal (selected by parameter 15.33 Freq out 1 source) that corresponds to the maximum value of frequency output 1 (defined by parameter 15.37 Freq out 1 at src max). This applies when 15.22 DO1 configuration is set to Frequency output. See parameter 15.34 Freq out 1 src min.	$\begin{aligned} & \hline 1500.000 ; \\ & 1800.000 \\ & \text { (95.20 b0) } \end{aligned}$
	$\begin{aligned} & -32768.000 \ldots \\ & 32767.000 \end{aligned}$	Real signal value corresponding to maximum value of frequency output 1 .	$1=1$
15.36	Freq out 1 at src min	Defines the minimum output value of frequency output 1 when 15.22 DO1 configuration is set to Frequency output. See also drawing at parameter 15.34 Freq out 1 src min.	0 Hz
	$0 \ldots 16000 \mathrm{~Hz}$	Minimum frequency output 1 value.	$1=1 \mathrm{~Hz}$
15.37	Freq out 1 at src max	Defines the maximum value of frequency output 1 when 15.22 DO1 configuration is set to Frequency output. See also drawing at parameter 15.34 Freq out 1 src min.	16000 Hz
	$0 \ldots 16000 \mathrm{~Hz}$	Maximum value of frequency output 1.	$1=1 \mathrm{~Hz}$

No.	Name/Value	Description	Def/FbEq16
19 Operation mode		Selection of local and external control location sources and operating modes. See also section Operating modes of the drive (page 112).	
19.01	Actual operation mode	Displays the operating mode currently used. See parameters 19.11...19.14. This parameter is read-only.	Scalar (Hz)
	Zero	None.	1
	Speed	Speed control (in vector motor control mode).	2
	Torque	Torque control (in vector motor control mode).	3
	Min	The torque selector is comparing the output of the speed controller (25.01 Torque reference speed control) and torque reference (26.74 Torque ref ramp out) and the smaller of the two is used (in vector motor control mode).	4
	Max	The torque selector is comparing the output of the speed controller (25.01 Torque reference speed control) and torque reference (26.74 Torque ref ramp out) and the greater of the two is used (in vector motor control mode).	5
	Add	The speed controller output is added to the torque reference (in vector motor control mode).	6
	Reserved		7... 9
	Scalar (Hz)	Frequency control in scalar motor control mode.	10
	Forced magn.	Motor is in magnetizing mode.	20
19.11	Ext1/Ext2 selection	Selects the source for external control location EXT1/EXT2 selection. $\begin{aligned} & 0=\text { EXT1 } \\ & 1=\text { EXT2 } \end{aligned}$	EXT1
	EXT1	EXT1 (permanently selected).	0
	EXT2	EXT2 (permanently selected).	1
	FBA A MCW bit 11	Control word bit 11 received through fieldbus interface A .	2
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	3
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	4
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	5
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	6
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	7
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	8
	Reserved		9... 18
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	19
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	20
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	21
	Reserved		22... 24
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	25
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	26
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	27
	Reserved		28... 31

No.	Name/Value	Description	Def/FbEq16
	EFB MCW bit 11	Control word bit 11 received through the embedded fieldbus interface.	32
	FBAA connection loss	Detected communication loss of fieldbus interface A changes control mode to EXT2.	33
	EFB connection loss	Detected communication loss of embedded fieldbus interface changes control mode to EXT2.	34
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
19.12	Ext1 control mode	Selects the operating mode for external control location EXT1 in vector motor control mode.	Speed
	Zero	None.	1
	Speed	Speed control. The torque reference used is 25.01 Torque reference speed control (output of the speed reference chain).	2
	Torque	Torque control. The torque reference used is 26.74 Torque ref ramp out (output of the torque reference chain).	3
	Minimum	Combination of selections Speed and Torque: the torque selector compares the speed controller output (25.01 Torque reference speed control) and the torque reference (26.74 Torque ref ramp out) and selects the smaller of the two. If speed error becomes negative, the drive follows the speed controller output until speed error becomes positive again. This prevents the drive from accelerating uncontrollably if the load is lost in torque control.	4
	Maximum	Combination of selections Speed and Torque: the torque selector compares the speed controller output (25.01 Torque reference speed control) and the torque reference (26.74 Torque ref ramp out) and selects the greater of the two. If speed error becomes positive, the drive follows the speed controller output until speed error becomes negative again. This prevents the drive from accelerating uncontrollably if the load is lost in torque control.	5
19.14	Ext2 control mode	Selects the operating mode for external control location EXT2 in vector motor control mode. For the selections, see parameter 19.12 Ext1 control mode.	Speed
19.16	Local control mode	Selects the operating mode for local control in vector motor control mode.	Speed
	Speed	Speed control. The torque reference used is 25.01 Torque reference speed control (output of the speed reference chain).	0
	Torque	Torque control. The torque reference used is 26.74 Torque ref ramp out (output of the torque reference chain).	1
19.17	Local control disable	Enables/disables local control (start and stop buttons on the control panel, and the local controls on the PC tool). \qquad WARNING! Before disabling local control, ensure that the control panel is not needed for stopping the drive.	No
	No	Local control enabled.	0
	Yes	Local control disabled.	1

No.	Name/Value	Description	Def/FbEq16
	Embedded fieldbus	The start and stop commands are taken from the embedded fieldbus interface. Note: Set also 20.02 Ext1 start trigger type to Level.	14
20.02	Ext1 start trigger type	Defines whether the start signal for external control location EXT1 is edge-triggered or level-triggered. Note: This parameter is not effective if a pulse-type start signal is selected. See the descriptions of the selections of parameter 20.01 Ext1 commands.	Level
	Edge	The start signal is edge-triggered.	0
	Level	The start signal is level-triggered.	1
20.03	Ext1 in1 source	Selects source 1 for parameter 20.01 Ext1 commands.	DI1
	Always off	Always off.	0
	Always on	Always on.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8...17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
20.04	Ext1 in2 source	Selects source 2 for parameter 20.01 Ext1 commands. For the available selections, see parameter 20.03 Ext1 in1 source.	DI2
20.05	Ext1 in3 source	Selects source 3 for parameter 20.01 Ext1 commands. For the available selections, see parameter 20.03 Ext1 in1 source.	Always off
20.06	Ext2 commands	Selects the source of start, stop and direction commands for external control location 2 (EXT2). See parameter 20.21 for the determination of the actual direction. See also parameters 20.07...20.10.	Not selected
	Not selected	No start or stop command sources selected.	0

\qquad

No.	Name/Value	Description	Def/FbEq16
20.09	Ext2 in2 source	Selects source 2 for parameter 20.06 Ext2 commands. For the available selections, see parameter 20.03 Ext1 in 1 source.	Always off
20.10	Ext2 in3 source	Selects source 3 for parameter 20.06 Ext2 commands. For the available selections, see parameter 20.03 Ext1 in 1 source.	Always off
20.11	Run enable stop mode	Selects the way the motor is stopped when the run enable signal switches off. The source of the run enable signal is selected by parameter 20.12 Run enable 1 source.	Coast
	Coast	Stop by switching off the output semiconductors of the drive. The motor coasts to a stop. \qquad WARNING! If a mechanical brake is used, ensure it is safe to stop the drive by coasting.	0
	Ramp	Stop along the active deceleration ramp. See parameter group 23 Speed reference ramp on page 276.	1
	Torque limit	Stop according to torque limits (parameters 30.19 and 30.20).	2
20.12	Run enable 1 source	Selects the source of the external run enable signal. If the run enable signal is switched off, the drive will not start. If already running, the drive will stop according to the setting of parameter 20.11 Run enable stop mode. 1 = Run enable signal on. See also parameter 20.19 Enable start command.	Selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8...17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Reserved		27... 29
	FBAA MCW bit 3	Control word bit 3 received through fieldbus interface A .	30
	Reserved		31
	EFB MCW bit 3	Control word bit 3 received through the embedded fieldbus interface.	32
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-

No.	Name/Value	Description	Def/FbEq16
20.19	Enable start command	Selects the source for the start enable signal. 1 = Start enable. With the signal switched off, any drive start command is inhibited. (Switching the signal off while the drive is running will not stop the drive.) See also parameter 20.12 Run enable 1 source.	Selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-

| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- | :--- |
| 20.21 | Direction | Reference direction lock. Defines the direction of the drive
 rather than the sign of the reference, except in some cases.
 In the table the actual drive rotation is shown as a function of
 parameter 20.21 Direction and Direction command (from
 parameter 20.01 | Reqt1 commands or 20.06 Ext2 commands). |

Request		In external control the direction is selected by a direction command (parameter 20.01 Ext1 commands or 20.06 Ext2 commands). If the reference comes from Constant (constant speeds/frequencies), Motor potentiometer, PID, Speed ref safe, Last speed reference, Jogging speed or Panel reference, the reference is used as is. If the reference comes from a fieldbus: - if the direction command is forward, the reference is used as is - if the direction command is reverse, the reference is multiplied by -1 .	0
	Forward	Motor rotates forward regardless of the sign of the external reference. (Negative reference values are replaced by zero. Positive reference values are used as is.)	1
	Reverse	Motor rotates reverse regardless of the sign of the external reference. (Negative reference values are replaced by zero. Positive reference values are multiplied by -1.)	2
20.22	Enable to rotate	Setting this parameter to 0 stops motor rotating but does not affect any other conditions for rotating. Setting the parameter back to 1 starts motor rotating again. This parameter can be used for example with a signal from some external equipment to prevent the motor rotating before the equipment is ready. When this parameter is 0 (rotating of the motor is disabled), bit 13 of parameter 06.16 Drive status word 1 is set to 0 .	Selected
	Not selected	0 (always off).	0
	Selected	1 (always on).	1

No.	Name/Value	Description	Def/FbEq16
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
20.25	Jogging enable	Selects the source for a jog enable signal. (The sources for jogging activation signals are selected by parameters 20.26 Jogging 1 start source and 20.27 Jogging 2 start source.) 1 = Jogging is enabled. $0=$ Jogging is disabled. Notes: - Jogging is supported in vector control mode only. - Jogging can be enabled only when no start command from an external control location is active. On the other hand, if jogging is already enabled, the drive cannot be started from an external control location (apart from inching commands through fieldbus). - See section Rush control (page 165).	Not selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26

No.	Name/Value	Description	Def/FbEq16
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
20.26	Jogging 1 start source	If enabled by parameter 20.25 Jogging enable, selects the source for the activation of jogging function 1. (Jogging function 1 can also be activated through fieldbus regardless of parameter 20.25.) 1 = Jogging 1 active. Notes: - Jogging is supported in vector control mode only. - If both jogging 1 and 2 are activated, the one that was activated first has priority. - This parameter cannot be changed while the drive is running.	Not selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supenvision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
20.27	Jogging 2 start source	If enabled by parameter 20.25 Jogging enable, selects the source for the activation of jogging function 2. (Jogging function 2 can also be activated through fieldbus regardless of parameter 20.25.) 1 = Jogging 2 active. For the selections, see parameter 20.26 Jogging 1 start source. Notes: - Jogging is supported in vector control mode only. - If both jogging 1 and 2 are activated, the one that was activated first has priority. - This parameter cannot be changed while the drive is running.	Not selected

No.	Name/Value	Description	Def/FbEq16
20.30	Enable signal warning function	Selects enable signal warnings to be suppressed. This parameter can be used to prevent these warnings from flooding the event log. Whenever a bit of this parameter is set to 1, the corresponding warning is suppressed.	0000h

Bit	Name	Description	
0	Enable to rotate	1 = Warning AFED Enable to rotate is suppressed.	
1	Run enable missing	1 = Warning AFEB Run enable missing is suppressed.	
$3 \ldots 15$	Reserved		

$0000 \mathrm{~h} .$. FFFFh	Word for disabling enable signal warnings.	$1=1$

21 Start/stop mode	Start and stop modes; emergency stop mode and signal source selection; DC magnetization settings.	
21.01 Start mode	Selects the motor start function for the vector motor control mode, ie. when 99.04 Motor control mode is set to Vector. Notes: - The start function for the scalar motor control mode is selected by parameter 21.19 Scalar start mode. Starting into a rotating motor is not possible when DC magnetizing is selected (Fast or Const time). - With permanent magnet motors, Automatic start mode must be used. - This parameter cannot be changed while the drive is running. See also section DC magnetization (page 161).	
Fast	The drive pre-magnetizes the motor before start. The pre- magnetizing time is determined automatically, being typically 200 ms to 2 s depending on motor size. This mode should be selected if a high break-away torque is required.	0
Const time	The drive pre-magnetizes the motor before start. The pre- magnetizing time is defined by parameter 21.02 Magnetization time. This mode should be selected if constant pre-magnetizing time is required (for example, if the motor start must be synchronized with the release of a mechanical brake). This setting also guarantees the highest possible break-away torque when the pre-magnetizing time is set long enough. wARNING! The drive will start after the set	1
Automatic	magnetizing time has passed even if motor magnetization is not completed. In applications where	
a full break-away torque is essential, ensure that the constant		
magnetizing time is long enough to allow generation of full		
magnetization and torque.		

No.	Name/Value	Description		Def/FbEq16
21.02	Magnetization time	Defines the pre-magn - parameter 21.01 S motor control mode - parameter 21.19 S Torque boost (in sc After the start comma premagnetizes the mo magnetizing, set this higher than, the rotor rule-of-thumb value g Note: This parameter running.	time when is set to Const time (in vector mode is set to Const time or r control mode). ive automatically set time. To ensure full to the same value as, or tant. If not known, use the table below: Constant magnetizing time $\begin{aligned} & \geq 50 \text { to } 100 \mathrm{~ms} \\ & \geq 100 \text { to } 200 \mathrm{~ms} \\ & \geq 200 \text { to } 1000 \mathrm{~ms} \\ & \geq 1000 \text { to } 2000 \mathrm{~ms} \end{aligned}$ changed while the drive is	500 ms
	0... 10000 ms	Constant DC magnetizing time.		1 = 1 ms
21.03	Stop mode	Selects the way the motor is stopped when a stop command is received. Additional braking is possible by selecting flux braking (see parameter 97.05 Flux braking).		Coast
	Coast	Stop by switching off the output semiconductors of the drive. The motor coasts to a stop. WARNING! If a mechanical brake is used, ensure it is safe to stop the drive by coasting.		0
	Ramp	Stop along the active deceleration ramp. See parameter group 23 Speed reference ramp on page 276 or 28 Frequency reference chain on page 290.		1
	Torque limit	Stop according to torque limits (parameters 30.19 and 30.20). This mode is only possible in vector motor control mode.		2
21.04	Emergency stop mode	Selects the way the motor is stopped when an emergency stop command is received. The source of the emergency stop signal is selected by parameter 21.05 Emergency stop source.		$\begin{aligned} & \text { Ramp stop } \\ & \text { (Off1) } \end{aligned}$
	Ramp stop (Off1)	With the drive running: - 1 = Normal operation. - $0=$ Normal stop along the standard deceleration ramp defined for the particular reference type (see section Rush control [page 165]). After the drive has stopped, it can be restarted by removing the emergency stop signal and switching the start signal from 0 to 1. With the drive stopped: - 1 = Starting allowed. - $0=$ Starting not allowed.		0
	Coast stop (Off2)	With the drive running: - 1 = Normal operation. - $0=$ Stop by coasting. With the drive stopped: - 1 = Starting allowed. - $0=$ Starting not allowed.		1

No.	Name/Value	Description	Def/FbEq16
	Eme ramp stop (Off3)	With the drive running: - 1 = Normal operation - $0=$ Stop by ramping along emergency stop ramp defined by parameter 23.23 Emergency stop time. After the drive has stopped, it can be restarted by removing the emergency stop signal and switching the start signal from 0 to 1 . With the drive stopped: - 1 = Starting allowed. - $0=$ Starting not allowed.	2
21.05	Emergency stop source	Selects the source of the emergency stop signal. The stop mode is selected by parameter 21.04 Emergency stop mode. $0=$ Emergency stop active. 1 = Normal operation Note: This parameter cannot be changed while the drive is running.	Inactive (true)
	Active (false)	0.	0
	Inactive (true)	1.	1
	Reserved		2
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	3
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	4
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	5
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	6
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	7
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	8
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
21.06	Zero speed limit	Defines the zero speed limit. The motor is stopped along a speed ramp (when ramped stop is selected or emergency stop time is used) until the defined zero speed limit is reached. After the zero speed delay, the motor coasts to a stop.	30.00 rpm
	$\begin{aligned} & \text { 0.00... } 30000.00 \\ & \text { rpm } \end{aligned}$	Zero speed limit.	See par. 46.01

No.	Name/Value	Description	Def/FbEq16
21.07	Zero speed delay	Defines the delay for the zero speed delay function. The function is useful in applications where a smooth and quick restarting is essential. During the delay, the drive knows the rotor position accurately. Without zero speed delay: The drive receives a stop command and decelerates along a ramp. When actual motor speed falls below the value of parameter 21.06 Zero speed limit, inverter modulation is stopped and the motor coasts to a standstill. With zero speed delay: The drive receives a stop command and decelerates along a ramp. When actual motor speed falls below the value of parameter 21.06 Zero speed limit, the zero speed delay function activates. During the delay the function keeps the speed controller live: the inverter modulates, motor is magnetized and the drive is ready for a quick restart. Zero speed delay can be used, for example, with the jogging function. Speed	0 ms
	$0 . . .30000 \mathrm{~ms}$	Zero speed delay.	$1=1 \mathrm{~ms}$

No.	Name/Value	Description	Def/FbEq16
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	8
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	9
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	10
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	11
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	12
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	13
	MCW user bit 0	Bit 12 of 06.01 Main control word (see page 208).	16
	MCW user bit 1	Bit 13 of 06.01 Main control word (see page 208).	17
	MCW user bit 2	Bit 14 of 06.01 Main control word (see page 208).	18
	MCW user bit 3	Bit 15 of 06.01 Main control word (see page 208).	19
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
21.15	Pre-heating time delay	Defines the time delay before pre-heating starts after the drive is stopped.	60 s
	10...3000 s	Pre-heating time delay.	$1=1 \mathrm{~s}$
21.16	Pre-heating current	Defines the DC current used to heat the motor. The value is in percent of the nominal motor current.	0.0\%
	0.0...30.0\%	Pre-heating current.	1 = 1\%
21.18	Auto restart time	The motor can be automatically started after a short supply power failure using the automatic restart function. See section Automatic restart (page 171). When this parameter is set to 0.0 seconds, automatic restarting is disabled. Otherwise, the parameter defines the maximum duration of the power failure after which restarting is attempted. Note that this time also includes the DC precharging delay. See also parameter 21.34 Force auto restart. This parameter has effect only if parameter 95.04 Control board supply is set to External 24 V . WARNING! Before you activate the function, make sure that no dangerous situations can occur. The function restarts the drive automatically and continues operation after a supply break.	10.0 s
	0.0 s	Automatic restarting disabled.	0
	$0.1 . .10 .0 \mathrm{~s}$	Maximum power failure duration.	$1=1 \mathrm{~s}$
21.19	Scalar start mode	Selects the motor start function for the scalar motor control mode, that is, when 99.04 Motor control mode is set to Scalar. Notes: - The start function for the vector motor control mode is selected by parameter 21.01 Start mode. - With permanent magnet motors, Automatic start mode must be used. - This parameter cannot be changed while the drive is running. See also section DC magnetization (page 161).	Normal
	Normal	Immediate start from zero speed.	0

No.	Name/Value	Description	Def/FbEq16
	Const time	The drive pre-magnetizes the motor before start. The premagnetizing time is defined by parameter 21.02 Magnetization time. This mode should be selected if constant pre-magnetizing time is required (for example, if the motor start must be synchronized with the release of a mechanical brake). This setting also guarantees the highest possible break-away torque when the pre-magnetizing time is set long enough. Note: This mode cannot be used to start into a rotating motor. WARNING! The drive will start after the set premagnetizing time has passed even if motor magnetization is not completed. In applications where a full break-away torque is essential, ensure that the constant magnetizing time is long enough to allow generation of full magnetization and torque.	1
	Automatic	The drive automatically selects the correct output frequency to start a rotating motor. This is useful for flying starts: if the motor is already rotating, the drive will start smoothly at the current frequency. Note: Cannot be used in multimotor systems.	2
	Torque boost	The drive pre-magnetizes the motor before the start. The premagnetizing time is defined by parameter 21.02 Magnetization time. Torque boost is applied at start. Torque boost is stopped when output frequency exceeds 40% of nominal frequency or when it is equal to the reference value. See parameter 21.26 Torque boost current. This mode should selected if a high break-away torque is required. Note: This mode cannot be used to start into a rotating motor. WARNING! The drive will start after the set premagnetizing time has passed even if motor magnetization is not completed. In applications where a full break-away torque is essential, ensure that the constant magnetizing time is long enough to allow generation of full magnetization and torque.	3
	Automatic+boost	Automatic start with torque boost. Automatic start is performed first and the motor is magnetized. If the speed is found to be zero, torque boost is applied.	4
	Flying start	The drive automatically selects the correct output frequency to start a rotating motor. If the motor is already rotating, drive will start smoothly at the current frequency. - The mode will start the motor with vector control and switch to scalar control on the fly when the motor speed has been found. Compared to the Automatic start mode, Flying start detects the motor speed faster. Flying start requires more accurate information about motor model. Therefore standstill ID run is done automatically when the drive is started for the first time after selecting Flying start. Motor plate values should be accurate. Wrong plate values may decrease the starting performance. Note: During flying start, the drive will at first run in vector control mode. This is why, when using flying start, the drive nominal current setting must be in the allowed range for vector control mode, see parameter 99.06 Motor nominal current.	5

No.	Name/Value	Description	Def/FbEq16
	Flying start+boost	Flying start with torque boost. Flying start is performed first and the motor is magnetized. If the speed is found to be zero, torque boost is applied.	6
21.21	DC hold frequency	Defines the DC hold frequency, which is used instead of parameter 21.09 DC hold speed when the motor is in scalar frequency mode. See parameter 21.08 DC current control, and section DC hold (page 162).	5.00 Hz
	0.00... 1000.00 Hz	DC hold frequency.	$1=1 \mathrm{~Hz}$
21.22	Start delay	Defines the start delay. After the conditions for start have been fulfilled, the drive waits until the delay has elapsed and then starts the motor. During the delay, warning AFE9 Start delay is shown. Start delay can be used with all start modes.	0.00 s
	0.00...60.00 s	Start delay	$1=1 \mathrm{~s}$
21.23	Smooth start	Selects the forced current vector rotation mode at low speeds. When the smooth start mode is selected, the rate of acceleration is limited by the acceleration and deceleration ramp times. If the process driven by the permanent magnet synchronous motor has high inertia, slow ramp times are recommended. Can be used for permanent magnet synchronous motors only.	Disabled
	Disabled	Disabled.	0
	Enabled always	Enabled always.	1
	Start only	Enabled when starting the motor.	2
21.24	Smooth start current	Current used in the current vector rotation at low speeds. Increase the smooth start current if the application requires motor shaft swinging needs to be minimized. Note that accurate torque control is not possible in the current vector rotation mode. Can be used for permanent magnet synchronous motors only.	50.0\%
	10.0...200.0\%	Value in percent of the nominal motor current.	1 = 1\%
21.25	Smooth start speed	Output frequency up to which the current vector rotation is used. See parameter 21.19 Scalar start mode. Can be used for permanent magnet synchronous motors only.	10.0\%
	2.0...100.0\%	Value as a percentage of the nominal motor frequency.	1 = 1\%
21.26	Torque boost current	Defines the maximum supplied current to motor when (21.19 Scalar start mode is set to Torque boost (see page 263). Parameter value is in percent of the motor nominal current. Nominal value of the parameter is 100.0%. Torque boost is only applied at start, ending when output frequency exceeds 40% of nominal frequency or when output frequency is equal to reference. Can be used in scalar motor control mode only.	100.0\%
	15.0...300.0\%	Value in percent of the nominal motor current.	1 = 1%

No.	Name/Value	Description	Def/FbEq16
21.27	Torque boost time	Defines the minimum and maximum torque boost time. If torque boost time is less than 40% of frequency acceleration time (see parameters 28.72 and 28.74), then torque boost time is set at 40% of frequency acceleration time.	20.0 s
	0.0...60.0 s	Nominal motor time.	$1=1 \mathrm{~s}$
21.30	Speed compensated stop mode	Selects the method used to stop the drive. See also section. Speed compensated stop (page 168). Speed compensated stop is active only if - the operation mode is not torque, and - parameter 21.03 Stop mode is Ramp, or - parameter 20.11 Run enable stop mode is Ramp (in case Run enable is missing).	Off
	Off	Stop according parameter 21.03 Stop mode, no speed compensated stop.	0
	Speed comp FWD	If the direction of rotation is forward, speed compensation is used for constant distance braking. Speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. If the direction of rotation is reverse, the drive is stopped along a ramp.	1
	Speed comp REV	If the direction of rotation is reverse, speed compensation is used for constant distance braking. Speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp. If the direction of rotation is forward, the drive is stopped along a ramp.	2
	Speed comp bipolar	Regardless of the direction of rotation, speed compensation is used for constant distance braking. Speed difference (between used speed and maximum speed) is compensated by running the drive with current speed before the motor is stopped along a ramp.	3
21.31	Speed comp stop delay	This delay adds distance to the total distance traveled during a stop from maximum speed. It is used to adjust the distance to match requirements so that the distance traveled is not solely determined by the deceleration rate.	0.00 s
	0.00...1000.00 s	Speed delay.	$1=1 \mathrm{~s}$
21.32	Speed comp stop threshold	This parameter sets a speed threshold below which the Speed compensated stop feature is disabled. In this speed region, the speed compensated stop is not attempted and the drive stops as it would, using the ramp option.	10\%
	0...100\%	Speed threshold as a percent of the motor nominal speed.	1 = 1\%
21.34	Force auto restart	Forces automatic restart. The parameter is applicable only if parameter 95.04 Control board supply is set to External 24 V .	Disable
	Disable	Force auto restart disabled. Parameter 21.18 Auto restart time is in effect if its value is more than 0.0 s .	0
	Enable	Force auto restart enabled. Parameter 21.18 Auto restart time is ignored. The drive never trips on the undervoltage fault and the start signal is on forever. When he DC voltage is restored, the normal operation continues.	1
21.35	Preheating power	Defines the power used to heat the motor.	0.00

No.	Name/Value	Description	Def/FbEq16
	$0.00 \ldots 10.00 \mathrm{~kW}$	Preheating power.	$100=1 \mathrm{~kW}$
21.36	Preheating unit	Defines if preheating is specified as current or power.	Current
	Current		0
	Power		1

22 Speed reference selection	Speed reference selection; motor potentiometer settings. See the control chain diagrams on pages 554...559.	
22.01 Speed ref unlimited	Displays the output of the speed reference selection block. See the control chain diagram on page 555. This parameter is read-only.	-
$-30000.00 \ldots$ 30000.00 rpm	Value of the selected speed reference.	See par. 46.01

\qquad

No.	Name/Value	Description	Def/FbEq16
	Motor potentiometer	22.80 Motor potentiometer ref act (output of the motor potentiometer).	15
	PID	40.01 Process PID output actual (output of the process PID controller).	16
	Frequency input	11.38 Freq in 1 actual value (when DI5 is used as a frequency input).	17
	Control panel (ref saved)	Control panel reference (03.01 Panel reference, see page 202) saved by the control system for the location where the control returns is used as the reference. Reference - EXT1 reference - EXT2 reference - Active reference - . Inactive reference	18
	Control panel (ref copied)	Control panel reference (03.01 Panel reference, see page 202) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (for example, frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. - EXT1 reference x EXT2 reference - Active reference - . Inactive reference	19
	Other	Source selection (see Terms and abbreviations on page 196).	-
22.12	Ext1 speed ref2	Selects EXT1 speed reference source 2. For the selections, and a diagram of reference source selection, see parameter 22.11 Ext1 speed ref1.	Zero
22.13	Ext1 speed function	Selects a mathematical function between the reference sources selected by parameters 22.11 Ext1 speed ref1 and 22.12 Ext1 speed ref2. See diagram at 22.11 Ext1 speed ref1.	Ref1
	Ref1	Signal selected by 22.11 Ext1 speed ref1 is used as speed reference 1 as such (no function applied).	0
	Add (ref1 + ref2)	The sum of the reference sources is used as speed reference 1.	1
	Sub (ref1 - ref2)	The subtraction ([22.11 Ext1 speed ref1] - [22.12 Ext1 speed ref2]) of the reference sources is used as speed reference 1.	2
	Mul (ref1 × ref2)	The multiplication of the reference sources is used as speed reference 1.	3
	Min (ref1, ref2)	The smaller of the reference sources is used as speed reference 1.	4
	Max (ref1, ref2)	The greater of the reference sources is used as speed reference 1.	5

No.	Name/Value	Description	Def/FbEq16
22.18	Ext2 speed ref1	Selects EXT2 speed reference source 1. Two signal sources can be defined by this parameter and 22.19 Ext2 speed ref2. A mathematical function (22.20 Ext2 speed function) applied to the two signals creates an EXT2 reference. See diagram at 28.11 Ext1 frequency ref1.	Zero
	Zero	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2
	Reserved		3
	FB A ref1	03.05 FB A reference 1 (see page 202).	4
	FB A ref2	03.06 FB A reference 2 (see page 202).	5
	Reserved		6...7
	EFB ref1	03.09 EFB reference 1 (see page 202).	8
	EFB ref2	03.10 EFB reference 2 (see page 203).	9
	Reserved		10... 14
	Motor potentiometer	22.80 Motor potentiometer ref act (output of the motor potentiometer).	15
	PID	40.01 Process PID output actual (output of the process PID controller).	16
	Frequency input	11.38 Freq in 1 actual value (when DI5 is used as a frequency input).	17
	Control panel (ref saved)	Control panel reference (03.01 Panel reference, see page 202) saved by the control system for the location where the control returns is used as the reference. - EXT1 reference \mathbf{x} EXT2 reference - Active reference - . Inactive reference	18
	Control panel (ref copied)	Control panel reference (03.01 Panel reference, see page 202) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (for example, frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. - EXT1 reference \times EXT2 reference - Active reference . . Inactive reference	19
	Other	Source selection (see Terms and abbreviations on page 196).	-
22.19	Ext2 speed ref2	Selects EXT2 speed reference source 2. For the selections, and a diagram of reference source selection, see parameter 22.18 Ext2 speed ref1.	Zero

No.	Name/Value		Description		Def/FbEq16
22.20	Ext2 speed function		Selects a mathematical function between the reference sources selected by parameters 22.18 Ext2 speed ref1 and 22.19 Ext2 speed ref2. See diagram at 22.18 Ext2 speed ref1.		Ref1
	Ref1		Signal selected by Ext2 speed ref1 is used as speed reference 1 as such (no function applied).		0
	Add (ref1 + ref2)		The sum of the reference sources is used as speed reference 1.		1
	Sub (ref1 - ref2)		The subtraction ([22.11 Ext1 speed ref1] - [22.12 Ext1 speed ref2]) of the reference sources is used as speed reference 1.		2
	Mul (ref1 \times ref2)		The multiplication of the reference sources is used as speed reference 1 .		3
	Min (ref1, ref2)		The smaller of the reference sources is used as speed reference 1.		4
	Max (ref1, ref2)		The greater of the reference sources is used as speed reference 1.		5
22.21	Constant speed function		Determines how constant speeds are selected, and whether the rotation direction signal is considered or not when applying a constant speed.		0001b
	$\begin{array}{\|l\|} \hline \text { Bit } \\ \hline 0 \\ \hline \end{array}$	Name	Information		
		Constant speed mode		$0=$ Separate: Constant speeds 1,2 and 3 are separately activated by the sources defined by parameters $22.22,22.23$ and 22.24 respectively. In case of conflict, the constant speed with the smaller number takes priority.	
		Direction enable		1 = Start dir: To determine running direction for a constant speed, the sign of the constant speed setting (parameters 22.26...22.32) is multiplied by the direction signal (forward: +1 , reverse: -1). This effectively allows the drive to have 14 (7 forward, 7 reverse) constant speeds if all values in 22.26... 22.32 are positive.\qquad WARNING: If the direction signal is reverse and the active constant speed is negative, the drive will run in the forward direction.	
	$2 \ldots 1$	Reserved			
	0000h...FFFFh		Constant speed configuration word.		1 = 1

No.	Name/Value	Description	Def/FbEq16
22.22	Constant speed sel1	When bit 0 of parameter 22.21 Constant speed function is 0 (Separate), selects a source that activates constant speed 1. When bit 0 of parameter 22.21 Constant speed function is 1 (Packed), this parameter and parameters 22.23 Constant speed sel2 and 22.24 Constant speed sel3 select three sources whose states activate constant speeds as follows:	D/3

Source defined by par. 22.22	Source defined by par. 22.23	Source defined by par. 22.24	Constant speed active
0	0	0	None
1	0	0	Constant speed 1
0	1	0	Constant speed 2
1	1	0	Constant speed 3
0	0	1	Constant speed 4
1	0	1	Constant speed 5
0	1	1	Constant speed 6
1	1	1	Constant speed 7

	Always off	Always off.	0
	Always on	Always on.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
22.23	Constant speed sel2	When bit 0 of parameter 22.21 Constant speed function is 0 (Separate), selects a source that activates constant speed 2. When bit 0 of parameter 22.21 Constant speed function is 1 (Packed), this parameter and parameters 22.22 Constant speed sel1 and 22.24 Constant speed sel3 select three sources that are used to activate constant speeds. See table at parameter 22.22 Constant speed sel1. For the selections, see parameter 22.22 Constant speed sel1.	DI4

No.	Name/Value	Description	Def/FbEq16
22.24	Constant speed sel3	When bit 0 of parameter 22.21 Constant speed function is 0 (Separate), selects a source that activates constant speed 3. When bit 0 of parameter 22.21 Constant speed function is 1 (Packed), this parameter and parameters 22.22 Constant speed sel1 and 22.23 Constant speed sel2 select three sources that are used to activate constant speeds. See table at parameter 22.22 Constant speed sel1. For the selections, see parameter 22.22 Constant speed sel1.	Always off
22.26	Constant speed 1	Defines constant speed 1 (the speed the motor will turn when constant speed 1 is selected).	$\begin{aligned} & \hline 300.00 \mathrm{rpm} ; \\ & 360.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 1.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.27	Constant speed 2	Defines constant speed 2.	$\begin{aligned} & 600.00 \mathrm{rpm} ; \\ & 720.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 2.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.28	Constant speed 3	Defines constant speed 3.	$\begin{aligned} & 900.00 \mathrm{rpm} ; \\ & 1080.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 3.	See par. 46.01
22.29	Constant speed 4	Defines constant speed 4.	$\begin{aligned} & 1200.00 \mathrm{rpm} ; \\ & 1440.00 \mathrm{rpm} \\ & (95.20 \mathrm{bO}) \end{aligned}$
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 4.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.30	Constant speed 5	Defines constant speed 5.	$\begin{aligned} & 1500.00 \mathrm{rpm} ; \\ & 1800.00 \mathrm{rpm} \\ & (95.20 \mathrm{bo}) \end{aligned}$
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 5.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.31	Constant speed 6	Defines constant speed 6.	$\begin{aligned} & 2400.00 \mathrm{rpm} ; \\ & 2880.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 6.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.32	Constant speed 7	Defines constant speed 7.	3000.00 rpm; 3600.00 rpm (95.20 b0)
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Constant speed 7.	$\begin{aligned} & \hline \text { See par. } \\ & 46.01 \end{aligned}$
22.41	Speed ref safe	Defines a safe speed reference value that is used with supervision functions such as - 12.03 Al supervision function - 49.05 Communication loss action - 50.02 FBA A comm loss func.	0.00 rpm
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Safe speed reference.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$

No.	Name/Value	Description	Def/FbEq16
22.42	Jogging 1 ref	Defines the speed reference for jogging function 1. For more information on jogging, see page 165.	0.00 rpm
	$-30000.00 \ldots$ 30000.00 rpm	Speed reference for jogging function 1.	See par. 46.01
22.43	Jogging 2 ref	Defines the speed reference for jogging function 2. For more information on jogging, see page 165.	0.00 rpm
	$-30000.00 \ldots$ 30000.00 rpm	Speed reference for jogging function 2.	See par. 46.01
22.51	Critical speed function	Enables/disables the critical speeds function. Also determines whether the specified ranges are effective in both rotating directions or not. See also section Critical speeds/frequencies (page 125).	0000 b

Bit	Name	Information
0	Enable	1 = Enable: Critical speeds enabled.
		Sign mode
1	$1=$ Disable: Critical speeds disabled. account.	
$0=$ Absolute: Parameters $22.52 \ldots 22.57$ are handled as absolute values. Each range is effective in both directions of rotation.		
$2 \ldots 15$	Reserved	

	0000b...0011b	Critical speeds configuration word.	1 = 1
22.52	Critical speed 1 low	Defines the low limit for critical speed range 1. Note: This value must be less than or equal to the value of 22.53 Critical speed 1 high.	0.00 rpm
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Low limit for critical speed 1.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.53	Critical speed 1 high	Defines the high limit for critical speed range 1. Note: This value must be greater than or equal to the value of 22.52 Critical speed 1 low.	0.00 rpm
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	High limit for critical speed 1.	See par. 46.01
22.54	Critical speed 2 low	Defines the low limit for critical speed range 2. Note: This value must be less than or equal to the value of 22.55 Critical speed 2 high.	0.00 rpm
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Low limit for critical speed 2.	See par. 46.01
22.55	Critical speed 2 high	Defines the high limit for critical speed range 2. Note: This value must be greater than or equal to the value of 22.54 Critical speed 2 low.	0.00 rpm
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	High limit for critical speed 2.	See par. 46.01
22.56	Critical speed 3 low	Defines the low limit for critical speed range 3. Note: This value must be less than or equal to the value of 22.57 Critical speed 3 high.	0.00 rpm
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Low limit for critical speed 3.	See par. 46.01

\qquad

No.	Name/Value	Description	Def/FbEq16
22.57	Critical speed 3 high	Defines the high limit for critical speed range 3. Note: This value must be greater than or equal to the value of 22.56 Critical speed 3 low.	0.00 rpm
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	High limit for critical speed 3.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
22.71	Motor potentiometer function	Activates and selects the mode of the motor potentiometer. See section Speed compensated stop (page 168).	Disabled
	Disabled	Motor potentiometer is disabled and its value set to 0 .	0
	Enabled (init at stop /power-up)	When enabled, the motor potentiometer first adopts the value defined by parameter 22.72 Motor potentiometer initial value. The value can then be adjusted from the up and down sources defined by parameters 22.73 Motor potentiometer up source and 22.74 Motor potentiometer down source. A stop or a power cycle will reset the motor potentiometer to the initial value (22.72).	1
	Enabled (resume always)	As Enabled (init at stop /power-up), but the motor potentiometer value is retained over a power cycle.	2
	Enabled (init to actual)	Whenever another reference source is selected, the value of the motor potentiometer follows that reference. After the source of reference returns to the motor potentiometer, its value can again be changed by the up and down sources (defined by 22.73 and 22.74).	3
22.72	Motor potentiometer initial value	Defines an initial value (starting point) for the motor potentiometer. See the selections of parameter 22.71 Motor potentiometer function.	0.00
	$\begin{aligned} & \hline-32768.00 \ldots \\ & 32767.00 \end{aligned}$	Initial value for motor potentiometer.	1 = 1
22.73	Motor potentiometer up source	Selects the source of motor potentiometer up signal. $0=$ No change $1=$ Increase motor potentiometer value. (If both the up and down sources are on, the potentiometer value will not change.) Note: Motor potentiometer function up/down source control speed or frequency from zero to maximum speed or frequency. The running direction can be changed with parameter 20.04 Ext1 in2 source. See the figure in section Motor potentiometer on page 150.	Not used
	Not used	0.	0
	Not used	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20

No.	Name/Value	Description	Def/FbEq16
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
22.74	Motor potentiometer down source	Selects the source of motor potentiometer down signal. $0=\text { No change }$ 1 = Decrease motor potentiometer value. (If both the up and down sources are on, the potentiometer value will not change.) Note: Motor potentiometer function up/down source control speed or frequency from zero to maximum speed or frequency. The running direction can be changed with parameter 20.04 Ext1 in2 source. See the figure in section Motor potentiometer on page 150. For the selections, see parameter 22.73 Motor potentiometer up source.	Not used
22.75	Motor potentiometer ramp time	Defines the change rate of the motor potentiometer. This parameter specifies the time required for the motor potentiometer to change from minimum (22.76) to maximum (22.77). The same change rate applies in both directions.	40.0 s
	0.0...3600.0 s	Motor potentiometer change time.	$10=1 \mathrm{~s}$
22.76	Motor potentiometer min value	Defines the minimum value of the motor potentiometer. Note: If vector control mode is used, value of this parameter must be changed.	-50.00
	$\begin{aligned} & \hline-32768.00 \ldots \\ & 32767.00 \end{aligned}$	Motor potentiometer minimum.	1 = 1
22.77	Motor potentiometer max value	Defines the maximum value of the motor potentiometer. Note: If vector control mode is used, value of this parameter must be changed.	50.00
	$\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$	Motor potentiometer maximum.	$1=1$
22.80	Motor potentiometer ref act	The output of the motor potentiometer function. (The motor potentiometer is configured using parameters $22.71 \ldots 22.74$.) This parameter is read-only.	-
	$\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$	Value of motor potentiometer.	$1=1$
22.86	Speed reference act 6	Displays the value of the speed reference (EXT1 or EXT2) that has been selected by 19.11 Ext1/Ext2 selection. See diagram at 22.11 Ext1 speed ref1 or the control chain diagram on page 554. This parameter is read-only.	-
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Speed reference after additive 2.	See par. 46.01

No.	Name/Value	Description	Def/FbEq16
22.87	Speed reference act 7	Displays the value of speed reference before application of critical speeds. See the control chain diagram on page 555. The value is received from 22.86 Speed reference act 6 unless overridden by - any constant speed - a jogging reference - network control reference - control panel reference - safe speed reference. This parameter is read-only.	-
	-30000.00...	Speed reference before application of critical speeds.	See par. 30000.00 rpm

23 Speed reference ramp		Speed reference ramp settings (programming of the acceleration and deceleration rates for the drive). See the control chain diagram on page 556.	
23.01	Speed ref ramp input	Displays the used speed reference (in rpm) before it enters the ramping and shaping functions. See the control chain diagram on page 556. This parameter is read-only.	-
	$\begin{aligned} & \hline-30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Speed reference before ramping and shaping.	$\begin{aligned} & \hline \text { See par. } \\ & 46.01 \end{aligned}$
23.02	Speed ref ramp output	Displays the ramped and shaped speed reference in rpm. See the control chain diagram on page 556. This parameter is read-only.	-
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Speed reference after ramping and shaping.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
23.11	Ramp set selection	Selects the source that switches between the two sets of acceleration/deceleration ramp times defined by parameters 23.12...23.15. $0=$ Acceleration time 1 and deceleration time 1 are active $1=$ Acceleration time 2 and deceleration time 2 are active	DI5
	Acc/Dec time 1	0.	0
	Acc/Dec time 2	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	FBAA	For Transparent16 and Transparent32 profiles only. DCU control word bit 10 received through the fieldbus adapter A.	18
	Reserved		19
	EFB DCU CW bit 10	Only for the DCU profile. DCU control word bit 10 received through the embedded fieldbus interface.	20
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-

No.	Name/Value	Description	Def/FbEq16
23.12	Acceleration time 1	Defines acceleration time 1 as the time required for the speed to change from zero to the speed defined by parameter 46.01 Speed scaling (not to parameter 30.12 Maximum speed). If the speed reference increases faster than the set acceleration rate, the motor speed will follow the acceleration rate. If the speed reference increases slower than the set acceleration rate, the motor speed will follow the reference. If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive torque limits.	5.000 s
	0.000...1800.000 s	Acceleration time 1.	$10=1 \mathrm{~s}$
23.13	Deceleration time 1	Defines deceleration time 1 as the time required for the speed to change from the speed defined by parameter 46.01 Speed scaling (not from parameter 30.12 Maximum speed) to zero. If the speed reference decreases slower than the set deceleration rate, the motor speed will follow the reference. If the reference changes faster than the set deceleration rate, the motor speed will follow the deceleration rate. If the deceleration rate is set too short, the drive will automatically prolong the deceleration in order not to exceed drive torque limits (or not to exceed a safe DC link voltage). If there is any doubt about the deceleration time being too short, ensure that DC overvoltage control is on (parameter 30.30 Overvoltage contro). Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with braking equipment such as a brake chopper and brake resistor.	5.000 s
	0.000...1800.000 s	Deceleration time 1.	$10=1 \mathrm{~s}$
23.14	Acceleration time 2	Defines acceleration time 2. See parameter 23.12 Acceleration time 1.	60.000 s
	0.000...1800.000 s	Acceleration time 2.	$10=1 \mathrm{~s}$
23.15	Deceleration time 2	Defines deceleration time 2. See parameter 23.13 Deceleration time 1.	60.000 s
	0.000...1800.000 s	Deceleration time 2.	$10=1 \mathrm{~s}$
23.20	Acc time jogging	Defines the acceleration time for the jogging function ie. the time required for the speed to change from zero to the speed value defined by parameter 46.01 Speed scaling. See section Settings and diagnostics (page 165).	60.000 s
	0.000...1800.000 s	Acceleration time for jogging.	$10=1 \mathrm{~s}$
23.21	Dec time jogging	Defines the deceleration time for the jogging function ie. the time required for the speed to change from the speed value defined by parameter 46.01 Speed scaling to zero. See section Settings and diagnostics (page 165).	60.000 s
	0.000...1800.000 s	Deceleration time for jogging.	$10=1 \mathrm{~s}$

No.	Name/Value	Description	Def/FbEq16
23.23	Emergency stop time	Defines the time inside which the drive is stopped if an emergency stop Off3 is activated (that is, the time required for the speed to change from the speed value defined by parameter 46.01 Speed scaling or 46.02 Frequency scaling to zero). Emergency stop mode and activation source are selected by parameters 21.04 Emergency stop mode and 21.05 Emergency stop source respectively. Emergency stop can also be activated through fieldbus. Note: - Emergency stop Off1 uses the standard deceleration ramp as defined by parameters 23.11...23.15. - The same parameter value is also used in frequency control mode (ramp parameters 28.71...28.75).	3.000 s
	0.000...1800.000 s	Emergency stop Off3 deceleration time.	$10=1 \mathrm{~s}$
23.28	Variable slope enable	Activates the variable slope function, which controls the slope of the speed ramp during a speed reference change. This allows for a constantly variable ramp rate to be generated, instead of just the standard two ramps normally available. If the update interval of the signal from an external control system and the variable slope rate (23.29 Variable slope rate) are equal, speed reference (23.02 Speed ref ramp output) is a straight line. $t=$ update interval of signal from an external control system $\mathrm{A}=$ speed reference change during t This function is only active in remote control.	Off
	Off	Variable slope disabled.	0
	On	Variable slope enabled (not available in local control).	1
23.29	Variable slope rate	Defines the rate of the speed reference change when variable slope is enabled by parameter 23.28 Variable slope enable. For the best result, enter the reference update interval into this parameter.	50 ms
	2... 30000 ms	Variable slope rate.	$1=1 \mathrm{~ms}$

No.	Name/Value	Description	Def/FbEq16
23.32	Shape time 1	Defines the shape of the acceleration and deceleration ramps used with the set 1. 0.000 s : Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps. $0.001 \ldots 1000.000 \mathrm{~s}$: S-curve ramp. S-curve ramps are ideal for lifting applications. The S-curve consists of symmetrical curves at both ends of the ramp and a linear part in between. Acceleration: Deceleration:	0.000 s
	0.000...1800.000 s	Ramp shape at start and end of acceleration and deceleration.	$10=1 \mathrm{~s}$
23.33	Shape time 2	Defines the shape of the acceleration and deceleration ramps used with the set 2 . See parameter 23.32 Shape time 1.	0.000 s
	0.000...1800.000 s	Ramp shape at start and end of acceleration and deceleration.	$10=1 \mathrm{~s}$

No.	Name/Value	Description	Def/FbEq16
24 Speed reference conditioning		Speed error calculation; speed error window control configuration; speed error step. See the control chain diagram on page 557.	
24.01	Used speed reference	Displays the ramped and corrected speed reference (before speed error calculation). See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Speed reference used for speed error calculation.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
24.02	Used speed feedback	Displays the speed feedback used for speed error calculation. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Speed feedback used for speed error calculation.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
24.03	Speed error filtered	Displays the filtered speed error. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & -30000.0 \ldots \\ & 30000.0 \mathrm{rpm} \end{aligned}$	Filtered speed error.	$\begin{aligned} & \text { See par. } \\ & 46.01 \\ & \hline \end{aligned}$
24.04	Speed error inverted	Displays the inverted (unfiltered) speed error. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & -30000.0 \ldots \\ & 30000.0 \mathrm{rpm} \end{aligned}$	Inverted speed error.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
24.11	Speed correction	Defines a speed reference correction, ie. a value added to the existing reference between ramping and limitation. This is useful to trim the speed if necessary, for example to adjust draw between sections of a paper machine. See the control chain diagram on page 557.	0.00 rpm
	$\begin{aligned} & -10000.00 \ldots \\ & 10000.00 \mathrm{rpm} \end{aligned}$	Speed reference correction.	$\begin{aligned} & \hline \text { See par. } \\ & 46.01 \end{aligned}$
24.12	Speed error filter time	Defines the time constant of the speed error low-pass filter. If the used speed reference changes rapidly, the possible interferences in the speed measurement can be filtered with the speed error filter. Reducing the ripple with this filter may cause speed controller tuning problems. A long filter time constant and fast acceleration time contradict one another. A very long filter time results in unstable control.	0 ms
	$0 . . .10000 \mathrm{~ms}$	Speed error filtering time constant. $0=$ filtering disabled.	$1=1 \mathrm{~ms}$
25 Speed control		Speed controller settings. See the control chain diagram on page 557.	
25.01	Torque reference speed control	Displays the speed controller output that is transferred to the torque controller. See the control chain diagram on page 557. This parameter is read-only.	-
	-1600.0...1600.0\%	Limited speed controller output torque.	$\begin{aligned} & \hline \text { See par. } \\ & 46.03 \end{aligned}$

No.	Name/Value	Description	Def/FbEq16
25.02	Speed proportional gain	Defines the proportional gain $\left(\mathrm{K}_{\mathrm{p}}\right)$ of the speed controller. Too high a gain may cause speed oscillation. The figure below shows the speed controller output after an error step when the error remains constant.	5.00
		$\begin{aligned} & \text { Gain }=\mathrm{K}_{\mathrm{p}}=1 \\ & T_{1}=\text { Integration time }=0 \\ & T_{\mathrm{D}}=\text { Derivation time }=0 \end{aligned}$	
		Error value	
	Controller output $=K_{p} \times e$		ror value
		If gain is set to 1 , a 10% change in error value (reference actual value) causes the speed controller output to change by 10%, that is, the output value is input \times gain.	
	0.00...250.00	Proportional gain for speed controller.	$100=1$

No.	Name/Value	Description	Def/FbEq16
25.03	Speed integration time	Defines the integration time of the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant and the proportional gain of the speed controller is 1 . The shorter the integration time, the faster the continuous error value is corrected. This time constant must be set to the same order of magnitude as the time constant (time to respond) of the actual mechanical system being controlled, otherwise instability will result. Setting the integration time to zero disables the I-part of the controller. This is useful to do when tuning the proportional gain; adjust the proportional gain first, then return the integration time. Anti-windup (the integrator just integrates up to 100\%) stops the integrator if the controller output is limited. The figure below shows the speed controller output after an error step when the error remains constant.	1.50 s
	0.00...1000.00 s	Integration time for speed controller.	$10=1 \mathrm{~s}$

| No. | Name/Value | Description | Def/FbEq16 |
| :--- | :--- | :--- | :--- | :--- |
| 25.04 | Speed derivation
 time | Defines the derivation time of the speed controller. Derivative
 action boosts the controller output if the error value changes.
 The longer the derivation time, the more the speed controller
 output is boosted during the change. If the derivation time is
 set to zero, the controller works as a PI controller, otherwise
 as a PID controller. The derivation makes the control more
 responsive for disturbances. For simple applications,
 derivative time is not normally required and should be left at
 zero.
 The speed error derivative must be filtered with a low pass
 filter to eliminate disturbances.
 The figure below shows the speed controller output after an
 error step when the error remains constant. | 1 |

No.	Name/Value	Description	Def/FbEq16
25.06	Acc comp derivation time	Defines the derivation time for acceleration(/deceleration) compensation. In order to compensate for a high inertia load during acceleration, a derivative of the reference is added to the output of the speed controller. The principle of a derivative action is described under parameter 25.04 Speed derivation time. Note: As a general rule, set this parameter to the value between 50 and 100% of the sum of the mechanical time constants of the motor and the driven machine. The figure below shows the speed responses when a high inertia load is accelerated along a ramp. No acceleration compensation: Acceleration compensation:	0.00 s
	0.00...1000.00 s	Acceleration compensation derivation time.	$10=1 \mathrm{~s}$
25.07	Acc comp filter time	Defines the acceleration (or deceleration) compensation filter time constant. See parameters 25.04 Speed derivation time and 25.06 Acc comp derivation time.	8.0 ms
	$0.0 . .1000 .0 \mathrm{~ms}$	Acceleration/deceleration compensation filter time.	$1=1 \mathrm{~ms}$
25.15	Proportional gain em stop	Defines the proportional gain for the speed controller when an emergency stop is active. See parameter 25.02 Speed proportional gain.	10.00
	1.00...250.00	Proportional gain upon an emergency stop.	$100=1$

No.	Name/Value	Description	Def/FbEq16
25.33	Speed controller autotune	Activates (or selects a source that activates) the speed controller autotune function. See section Speed controller autotune (page 126). The autotune will automatically set parameters 25.02 Speed proportional gain, 25.03 Speed integration time and 25.37 Mechanical time constant. The prerequisites for performing the autotune routine are: - the motor identification run (ID run) has been successfully completed - the speed and torque limits (parameter group 30 Limits) have been set - speed error filtering (24 Speed reference conditioning) and zero speed (21 Start/stop mode) have been set, and - the drive has been started and is running in speed control mode. A WARNING: The motor and machinery will run against the torque and speed limits during the autotune routine. MAKE SURE IT IS SAFE TO ACTIVATE THE AUTOTUNE FUNCTION! The autotune routine can be aborted by stopping the drive. 0->1 = Activate speed controller autotune Note: The value does not revert to 0 automatically.	Off
	Off	0	0
	On	1	1
25.34	Speed controller autotune mode	Defines a control preset for the speed controller autotune function. The setting affects the way the torque reference will respond to a speed reference step.	Normal
	Smooth	Slow but robust response.	0
	Normal	Medium setting.	1
	Tight	Fast response. May produce too high a gain value for some applications.	2
25.37	Mechanical time constant	Mechanical time constant of the drive and the machinery as determined by the speed controller autotune function. The value can be adjusted manually.	0.00
	0.00...1000.00 s	Mechanical time constant.	$100=1 \mathrm{~s}$
25.38	Autotune torque step	Defines an added torque value used by the autotune function. This value is scaled to motor nominal torque. Note that the torque used by the autotune function can also be limited by the torque limits (in parameter group 30 Limits) and nominal motor torque.	10.00\%
	0.00...20.00\%	Autotune torque step.	$100=1 \%$
25.39	Autotune speed step	Defines a speed value added to the initial speed for the autotune routine. The initial speed (speed used when autotune is activated) plus the value of this parameter is the calculated maximum speed used by the autotune routine. The maximum speed can also be limited by the speed limits (in parameter group 30 Limits) and nominal motor speed. The value is scaled to motor nominal speed. Note: The motor will exceed the calculated maximum speed slightly at the end of each acceleration stage.	10.00\%
	0.00...20.00\%	Autotune speed step.	$100=1 \%$

No.	Name/Value	Description	Def/FbEq16
25.40	Autotune repeat times	Determines how many acceleration/deceleration cycles are performed during the autotune routine. Increasing the value will improve the accuracy of the autotune function, and allow the use of smaller torque or speed step values.	5
	1... 10	Repeat times	1 = 1
25.53	Torque prop reference	Displays the output of the proportional (P) part of the speed controller. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$	P-part output of speed controller.	See par. 46.03
25.54	Torque integral reference	Displays the output of the integral (I) part of the speed controller. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$	I-part output of speed controller.	See par. 46.03
25.55	Torque deriv reference	Displays the output of the derivative (D) part of the speed controller. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$	D-part output of speed controller.	$\begin{aligned} & \text { See par. } \\ & 46.03 \end{aligned}$
25.56	Torque acc compensation	Displays the output of the acceleration compensation function. See the control chain diagram on page 557. This parameter is read-only.	-
	$\begin{aligned} & \hline-30000.0 \ldots \\ & 30000.0 \% \end{aligned}$	Output of acceleration compensation function.	See par. 46.03

26 Torque reference chain		Settings for the torque reference chain. See the control chain diagrams on pages 560 and 561.	
26.01	Torque reference to TC	Displays the final torque reference given to the torque controller in percent. This reference is then acted upon by various final limiters, like power, torque, load etc. See the control chain diagrams on pages 560 and 561. This parameter is read-only.	-
	-1600.0...1600.0\%	Torque reference for torque control in percent of motor nominal torque (99.12).	See par. 46.03
26.02	Torque reference used	Displays the final torque reference (in percent of motor nominal torque) given to the torque controller, and comes after frequency, voltage and torque limitation. See the control chain diagram on page 562. This parameter is read-only.	-
	-1600.0..1600.0\%	Torque reference for torque control in percent of motor nominal torque (99.12).	See par. 46.03
26.08	Minimum torque ref	Defines the minimum torque reference. Allows for local limiting of the torque reference before it is passed on to the torque ramp controller. For absolute torque limiting, refer to parameter 30.19 Minimum torque 1.	-300.0\%
	-1000.0...0.0\%	Minimum torque reference in percent of motor nominal torque (99.12).	See par. 46.03

No.	Name/Value	Description		Def/FbEq16
26.09	Maximum torque ref	Defines the maximum torque reference. Allows for local limiting of the torque reference before it is passed on to the torque ramp controller. For absolute torque limiting, refer to parameter 30.20 Maximum torque 1.		300.0\%
	0.0...1000.0\%	Maximum torque reference in percent of motor nominal torque (99.12).		See par. 46.03
26.11	Torque ref1 source	Selects torque re Two signal sourc 26.12 Torque re Torque ref1/2 se two sources, or function) applied	ference source 1. es can be defined by this parameter and 2 source. A digital source selected by 26.14 lection can be used to switch between the mathematical function (26.13 Torque ref1 to the two signals to create the reference.	Zero
	Zero	None.		0
	Al1 scaled	12.12 Al1 scaled value (see page 227).		1
	Al2 scaled	12.22 Al2 scaled value (see page 229).		2
	Reserved			3
	FB A ref1	03.05 FB A reference 1 (see page 202).		4
	FB A ref2	03.06 FB A reference 2 (see page 202).		5
	Reserved			6...7
	EFB ref1	03.09 EFB reference 1 (see page 202).		8
	EFB ref2	03.10 EFB reference 2 (see page 203).		9
	Reserved			10... 14
	Motor potentiometer	22.80 Motor potentiometer ref act (output of the motor potentiometer).		15
	PID	40.01 Process PID output actual (output of the process PID controller).		16
	Frequency input	11.38 Freq in 1 actual value (when DI5 is used as a frequency input).		17

No.	Name/Value	Description	Def/FbEq16
	Control panel (ref saved)	Control panel reference (03.01 Panel reference, see page 202) saved by the control system for the location where the control returns is used as the reference. Reference	18

No.	Name/Value	Description
	Follow Ext1/Ext2 selection	Torque reference 1 is used when external control location EXT1 is active. Torque reference 2 is used when external control location EXT2 is active. See also parameter 19.11 Ext1/Ext2 selection.
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).
DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	2
DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).

\qquad

No.	Name/Value	Description	Def/FbEq16
	-1600.0..1600.0\%	Value of torque reference source 1.	See par. 46.03
26.71	Torque reference act 2	Displays the value of torque reference source 2 (selected by parameter 26.12 Torque ref2 source). See the control chain diagram on page 560. This parameter is read-only.	-
	-1600.0..1600.0\%	Value of torque reference source 2.	See par. 46.03
26.72	Torque reference act 3	Displays the torque reference after the function applied by parameter 26.13 Torque ref1 function (if any), and after selection (26.14 Torque ref1/2 selection). See the control chain diagram on page 560. This parameter is read-only.	-
	-1600.0..1600.0\%	Torque reference after selection.	See par. 46.03
26.73	Torque reference act 4	Displays the torque reference after application of reference additive 1 . See the control chain diagram on page 560. This parameter is read-only.	-
	-1600.0...1600.0\%	Torque reference after application of reference additive 1.	See par. 46.03
26.74	Torque ref ramp out	Displays the torque reference after limiting and ramping. See the control chain diagram on page 560. This parameter is read-only.	-
	-1600.0...1600.0\%	Torque reference after limiting and ramping.	See par. 46.03
26.75	Torque reference act 5	Displays the torque reference after control mode selection. See the control chain diagram on page 561. This parameter is read-only.	-
	-1600.0...1600.0\%	Torque reference after control mode selection.	See par. 46.03
26.76	Torque reference act 6	Displays the torque reference after torque trim. See the control chain diagram on page 561. This parameter is read-only.	-
	-1600.0...1600.0\%	Torque reference after torque trim.	See par. 46.03
26.81	Rush control gain	Rush controller gain term. See section Rush control (page 165).	5.0
	0.0...10000.0	Rush controller gain.	1 = 1
26.82	Rush control integration time	Rush controller integration time term.	2.0
	0.0...10.0	Rush controller integration time.	$1=1 \mathrm{~s}$

28 Frequency reference chain	Settings for the frequency reference chain. See the control chain diagrams on pages 552 and 553.	
28.01Frequency ref ramp input	Displays the used frequency reference before ramping. See the control chain diagram on page 552. This parameter is read-only.	-
$-500.00 \ldots 500.00$ Hz	Frequency reference before ramping.	See par. 46.02

No.	Name/Value	Description	Def/FbEq16
	Reserved		6... 7
	EFB ref1	03.09 EFB reference 1 (see page 202).	8
	EFB ref2	03.10 EFB reference 2 (see page 203).	9
	Reserved		10... 14
	Motor potentiometer	22.80 Motor potentiometer ref act (output of the motor potentiometer).	15
	PID	40.01 Process PID output actual (output of the process PID controller).	16
	Frequency input	11.38 Freq in 1 actual value (when DI5 is used as a frequency input).	17
	Control panel (ref saved)	Control panel reference (03.01 Panel reference, see page 202) saved by the control system for the location where the control returns is used as the reference. - EXT1 reference - EXT2 reference - Active reference . . Inactive reference	18
	Control panel (ref copied)	Control panel reference (03.01 Panel reference, see page 202) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (for example, frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference.	19
	Other	Source selection (see Terms and abbreviations on page 196).	-
28.12	Ext1 frequency ref2	Selects EXT1 frequency reference source 2. For the selections, and a diagram of reference source selection, see parameter 28.11 Ext1 frequency ref1.	Zero
28.13	Ext1 frequency function	Selects a mathematical function between the reference sources selected by parameters 28.11 Ext1 frequency ref1 and 28.12 Ext1 frequency ref2. See diagram at 28.11 Ext1 frequency ref1.	Ref1
	Ref1	Signal selected by 28.11 Ext1 frequency ref1 is used as frequency reference 1 as such (no function applied).	0
	Add (ref1 + ref2)	The sum of the reference sources is used as frequency reference 1.	1
	Sub (ref1 - ref2)	The subtraction ([28.11 Ext1 frequency ref1] - [28.12 Ext1 frequency ref2]) of the reference sources is used as frequency reference 1.	2
	Mul (ref1 × ref2)	The multiplication of the reference sources is used as frequency reference 1.	3
	Min (ref1, ref2)	The smaller of the reference sources is used as frequency reference 1.	4

No.	Name/Value	Description	Def/FbEq16
	Max (ref1, ref2)	The greater of the reference sources is used as frequency reference 1.	5
28.15	Ext2 frequency ref1	Selects EXT2 frequency reference source 1. Two signal sources can be defined by this parameter and 28.16 Ext2 frequency ref2. A mathematical function (28.17 Ext2 frequency function) applied to the two signals creates an EXT2 reference. See diagram at 28.11 Ext1 frequency ref1.	Zero
	Zero	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2
	Reserved		3
	FB A ref1	03.05 FB A reference 1 (see page 202).	4
	FB A ref2	03.06 FB A reference 2 (see page 202).	5
	Reserved		6...7
	EFB ref1	03.09 EFB reference 1 (see page 202).	8
	EFB ref2	03.10 EFB reference 2 (see page 203).	9
	Reserved		10... 14
	Motor potentiometer	22.80 Motor potentiometer ref act (output of the motor potentiometer).	15
	PID	40.01 Process PID output actual (output of the process PID controller).	16
	Frequency input	11.38 Freq in 1 actual value (when DI5 or DI6 is used as a frequency input).	17
	Control panel (ref saved)	Control panel reference (03.01 Panel reference, see page 202) saved by the control system for the location where the control returns is used as the reference. Reference - EXT1 reference \mathbf{x} EXT2 reference - Active reference . . Inactive reference EXT1 -> EXT2	18
	Control panel (ref copied)	Control panel reference (03.01 Panel reference, see page 202) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (for example, frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference. - EXT1 reference \times EXT2 reference - Active reference - . Inactive reference	19
	Other	Source selection (see Terms and abbreviations on page 196).	-
28.16	Ext2 frequency ref2	Selects EXT2 frequency reference source 2. For the selections, and a diagram of reference source selection, see parameter 28.15 Ext2 frequency ref1.	Zero

\qquad

No.	Name/Value	Description	Def/FbEq16
28.17	Ext2 frequency function	Selects a mathematical function between the reference sources selected by parameters 28.15 Ext2 frequency ref1 and 28.16 Ext2 frequency ref2. See diagram at 28.15 Ext2 frequency ref1.	Ref1
Ref1	Signal selected by 28.15 Ext2 frequency ref1 is used as frequency reference 1 as such (no function applied).	0	
Add (ref1 + ref2)	The sum of the reference sources is used as frequency reference 1.	1	
Sub (ref1 - ref2)	The subtraction ([28.15 Ext2 frequency ref1] - [28.16 Ext2 frequency ref2]) of the reference sources is used as frequency reference 1.	2	
Mul (ref1 x ref2)	The multiplication of the reference sources is used as frequency reference 1.	3	
Max (ref1, ref2)	The smaller of the reference sources is used as frequency reference 1.	The greater of the reference sources is used as frequency reference 1.	4

No.	Name/Value	Description	Def/FbEq16
28.22	Constant frequency sel1	When bit 0 of parameter 28.21 Constant frequency function is 0 (Separate), selects a source that activates constant frequency 1.	D/3
		When bit 0 of parameter 28.21 Constant frequency function is 1 (Packed), this parameter and parameters 28.23 Constant frequency sel2 and 28.24 Constant frequency sel3 select three sources whose states activate constant frequencies as follows:	

Source defined by par. 28.22	Source defined by par. 28.23	Source defined by par. 28.24	Constant frequency active
0	0	0	None
1	0	0	Constant frequency 1
0	1	0	Constant frequency 2
1	1	0	Constant frequency 3
0	0	1	Constant frequency 4
1	0	1	Constant frequency 5
0	1	1	Constant frequency 6
1	1	1	Constant frequency 7

	Always off	Always off.	0
	Always on	Always on.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
28.23	Constant frequency sel2	When bit 0 of parameter 28.21 Constant frequency function is 0 (Separate), selects a source that activates constant frequency 2. When bit 0 of parameter 28.21 Constant frequency function is 1 (Packed), this parameter and parameters 28.22 Constant frequency sel1 and 28.24 Constant frequency sel3 select three sources that are used to activate constant frequencies. See table at parameter 28.22 Constant frequency sel1. For the selections, see parameter 28.22 Constant frequency sel1.	DI4

\qquad

No.	Name/Value	Description	Def/FbEq16
28.24	Constant frequency sel3	When bit 0 of parameter 28.21 Constant frequency function is 0 (Separate), selects a source that activates constant frequency 3. When bit 0 of parameter 28.21 Constant frequency function is 1 (Packed), this parameter and parameters 28.22 Constant frequency sel1 and 28.23 Constant frequency sel2 select three sources that are used to activate constant frequencies. See table at parameter 28.22 Constant frequency sel1. For the selections, see parameter 28.22 Constant frequency sel1.	Always off
28.26	Constant frequency 1	Defines constant frequency 1 (the frequency the motor will turn when constant frequency 1 is selected).	$\begin{aligned} & 5.00 \mathrm{~Hz} ; \\ & 6.00 \mathrm{~Hz} \\ & (95.20 \mathrm{bo}) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 1.	See par. 46.02
28.27	Constant frequency 2	Defines constant frequency 2.	$\begin{aligned} & 10.00 \mathrm{~Hz} ; \\ & 12.00 \mathrm{~Hz} \\ & (95.20 \mathrm{bo}) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 2.	See par. 46.02
28.28	Constant frequency 3	Defines constant frequency 3.	$\begin{aligned} & 15.00 \mathrm{~Hz} ; \\ & 18.00 \mathrm{~Hz} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 3.	See par. 46.02
28.29	Constant frequency 4	Defines constant frequency 4.	$\begin{aligned} & 20.00 \mathrm{~Hz} ; \\ & 24.00 \mathrm{~Hz} \\ & (95.20 \mathrm{~b} 0) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 4.	See par. 46.02
28.30	Constant frequency 5	Defines constant frequency 5.	$\begin{aligned} & 25.00 \mathrm{~Hz} ; \\ & 30.00 \mathrm{~Hz} \\ & (95.20 \mathrm{bo}) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 5.	$\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$
28.31	Constant frequency 6	Defines constant frequency 6.	$\begin{aligned} & 40.00 \mathrm{~Hz} ; \\ & 48.00 \mathrm{~Hz} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 6.	See par. 46.02
28.32	Constant frequency 7	Defines constant frequency 7.	$\begin{aligned} & 50.00 \mathrm{~Hz} ; \\ & 60.00 \mathrm{~Hz} \\ & (95.20 \mathrm{~b} 0) \end{aligned}$
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Constant frequency 7.	See par. 46.02
28.41	Frequency ref safe	Defines a safe frequency reference value that is used with supervision functions such as - 12.03 Al supervision function - 49.05 Communication loss action - 50.02 FBA A comm loss func.	0.00 Hz
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Safe frequency reference.	See par. 46.02

\qquad

No.	Name/Value	Description	Def/FbEq16
28.42	Jogging 1 frequency ref	Defines the frequency reference for jogging function 1 in scalar control mode.	0.00 Hz
	$-500.00 \ldots 500.00$ Hz	Jogging 1 frequency reference.	See par. 46.02
28.43	Jogging 2 frequency ref	Defines the frequency reference for jogging function 2 in scalar control mode.	0.00 Hz
	$-500.00 \ldots 500.00$ Hz	Jogging 2 frequency reference.	

No.	Name/Value	Description	Def/FbEq16
28.57	Critical frequency 3 high	Defines the high limit for critical frequency 3. Note: This value must be greater than or equal to the value of 28.56 Critical frequency 3 low.	0.00 Hz
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	High limit for critical frequency 3.	See par. 46.02
28.71	Freq ramp set selection	Selects a source that switches between the two sets of acceleration/deceleration times defined by parameters 28.72...28.75. $0=$ Acceleration time 1 and deceleration time 1 are in force $1=$ Acceleration time 2 and deceleration time 2 are in force	D/5
	Acc/Dec time 1	0.	0
	Acc/Dec time 2	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	FBAA	For Transparent16 and Transparent32 profiles only. DCU control word bit 10 received through the fieldbus adapter.	18
	Reserved		19
	EFB DCU CW bit 10	Only for the DCU profile. DCU control word bit 10 received through the embedded fieldbus interface.	20
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
28.72	Freq acceleration time 1	Defines acceleration time 1 as the time required for the frequency to change from zero to the frequency defined by parameter 46.02 Frequency scaling. After this frequency has been reached, the acceleration continues with the same rate to the value defined by parameter 30.14 Maximum frequency. If the reference increases faster than the set acceleration rate, the motor will follow the acceleration rate. If the reference increases slower than the set acceleration rate, the motor frequency will follow the reference. If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive torque limits.	20.000 s
	0.000...1800.000 s	Acceleration time 1.	$10=1 \mathrm{~s}$
28.73	Freq deceleration time 1	Defines deceleration time 1 as the time required for the frequency to change from the frequency defined by parameter 46.02 Frequency scaling (not from parameter 30.14 Maximum frequency) to zero. If there is any doubt about the deceleration time being too short, ensure that DC overvoltage control (30.30 Overvoltage control) is on. Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with braking equipment such as a brake chopper and brake resistor.	20.000 s
	0.000...1800.000 s	Deceleration time 1.	$10=1 \mathrm{~s}$

No.	Name/Value	Description	Def/FbEq16
28.74	Freq acceleration time 2	Defines acceleration time 2. See parameter 28.72 Freq acceleration time 1.	60.000 s
	0.000...1800.000 s	Acceleration time 2.	$10=1 \mathrm{~s}$
28.75	Freq deceleration time 2	Defines deceleration time 2. See parameter 28.73 Freq deceleration time 1.	60.000 s
	0.000...1800.000 s	Deceleration time 2.	$10=1 \mathrm{~s}$
28.76	Freq ramp in zero source	Selects a source that forces the frequency reference to zero. $0=$ Force frequency reference to zero 1 = Normal operation	Inactive
	Active	0.	0
	Inactive	1.	1
DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2	
DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3	
DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4	
DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5	
DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6	
DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7	
Other [bit]	Source selection (see Terms and abbreviations on page 196).	-	

No.	Name/Value	Description	Def/FbEq16
28.82	Shape time 1	Defines the shape of the acceleration and deceleration ramps used with the set 1. 0.000 s: Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps. $0.001 \ldots 1000.000 \mathrm{~s}$: S-curve ramp. S-curve ramps are ideal for lifting applications. The S-curve consists of symmetrical curves at both ends of the ramp and a linear part in between. Acceleration:	0.000 s
	0.000...1800.000 s	Ramp shape at start and end of acceleration and deceleration.	$10=1 \mathrm{~s}$
28.83	Shape time 2	Defines the shape of the acceleration and deceleration ramps used with the set 2 . See parameter 28.82 Shape time 1.	0.000 s
	0.000...1800.000 s	Ramp shape at start and end of acceleration and deceleration.	$10=1 \mathrm{~s}$

No.	Name/Value	Description	Def/FbEq16
28.92	Frequency ref act 3	Displays the frequency reference after the function applied by parameter 28.13 Ext1 frequency function (if any), and after selection (19.11 Ext1/Ext2 selection). See the control chain diagram on page 552. This parameter is read-only.	-
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Frequency reference after selection.	See par. 46.02
28.96	Frequency ref act 7	Displays the frequency reference after application of constant frequencies, control panel reference, etc. See the control chain diagram on page 552. This parameter is read-only.	-
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Frequency reference 7.	See par. 46.02
28.97	Frequency ref unlimited	Displays the frequency reference after application of critical frequencies, but before ramping and limiting. See the control chain diagram on page 553. This parameter is read-only.	-
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Frequency reference before ramping and limiting.	See par. 46.02

No.	Name/Value		Description		Def/FbEq16
30.02	Torque limit status		Displays the torque controller limitation status word. This parameter is read-only.		-
	Bit	Name \quad Description			
	0	Undervoltage		*1 = Intermediate DC circuit undervoltage	
	1	Overvoltage		*1 = Intermediate DC circuit overvoltage	
	2	Minimum torque		*1 = Torque is being limited by 30.19 Minimum torque 1, 30.26 Powermotoring limit or 30.27 Power generating limit	
	3	Maximum torque		*1 = Torque is being limited by 30.20 Maximum torque 1, 30.26 Power motoring limit or 30.27 Power generating limit	
	4	Internal current		1 = An inverter current limit (identified by bits 8...11) is active	
	5	Load angle		(With permanent magnet motors and reluctance motors only) $1=$ Load angle limit is active, ie. the motor cannot produce any more torque	
	6	Motor pullout		(With asynchronous motors only) Motor pull-out limit is active, ie. the motor cannot produce any more torque	
	7	Reserved			
	8	Thermal		1 = Input current is being limited by the main circuit thermal limit	
	9	Max current		*1 = Maximum output current ($l_{\text {MAX }}$) is being limited	
	10	User current		*1 = Output current is being limited by 30.17 Maximum current	
	11	Thermal IGBT		*1 = Output current is being limited by a calculated thermal current value	
	12	IGBT overtemperature		*1 = Output current is being limited because of estimated IGBT temperature	
	13	IGBT overload		*1 = Output current is being limited because of IGBT junction to case temperature	
	14... 1	Reserved			
	*Only one out of bits $0 \ldots 3$, and one out of bits $9 \ldots 11$ can be on simultaneously. The bit typically indicates the limit that is exceeded first.				
	0000h...FFFFh		Torque limitation status word.		1 = 1

No.	Name/Value	Description		Def/FbEq16	
30.13	Minimum frequency	Defines together with 30.14 Maximum frequency the allowed frequency range. See the figure. A positive or zero minimum frequency value defines two ranges, one positive and one negative. A negative minimum frequency value defines one range. WARNING! The absolute value of 30.13 Minimum frequency must not be higher than the absolute value of 30.14 Maximum frequency. WARNING! in frequency control mode only.		$\begin{aligned} & \hline-50.00 \mathrm{~Hz} ; \\ & -60.00 \mathrm{~Hz} \\ & (95.20 \mathrm{~b} 0) \end{aligned}$	
	Frequency	Frequency $\quad 20.21$ value		Request	
		30.14 30.13	- 30.13 value		
	$30.14{ }^{\text {Frequency ra }}$		Frequency range allowed		
		ge allowed 30.13			
	30.13	(30.14)-	Frequency range allowed		
			Frequency $\quad 20.21$ value $=$ Forwa		
			$30.13 \text { value }>=0$		
		30.14	Frequency range allowed		
		(30.13)-	Time		
		-(30.14)			
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Minimum frequency.		$\begin{aligned} & \text { See par. } \\ & 46.02 \end{aligned}$	
30.14	Maximum frequency	Defines together with 30.13 Minimum frequency the allowed frequency range. See parameter 30.13 Minimum frequency. Note: This parameter does not affect the frequency acceleration and deceleration ramp times. See parameter 46.02 Frequency scaling.		$\begin{aligned} & 50.00 \mathrm{~Hz} ; \\ & 60.00 \mathrm{~Hz} \\ & (95.20 \mathrm{bO}) \end{aligned}$	
	$\begin{aligned} & -500.00 \ldots 500.00 \\ & \mathrm{~Hz} \end{aligned}$	Maximum frequency.		$\begin{aligned} & \hline \text { See par. } \\ & 46.02 \end{aligned}$	
30.17	Maximum current	Defines the maximum allowed motor current. This depends on the drive type; it is automatically determined on the basis of the rating. The system sets the default value to 90% of the rated current so you can increase the parameter value by 10% if needed (not valid for ACS580-01-12A7-4 drive type).		0.00 A	
	0.00...30000.00 A	Maximum motor current.		$1=1 \mathrm{~A}$	

No.	Name/Value	Description	Def/FbEq16
30.18	Torq lim sel	Selects a source that switches between two different predefined minimum torque limit sets. $0=$ minimum torque limit defined by 30.19 and maximum torque limit defined by 30.20 are active 1 = minimum torque limit selected by 30.21 and maximum torque limit defined by 30.22 are active The user can define two sets of torque limits, and switch between the sets using a binary source such as a digital input. The first set of limits is defined by parameters 30.19 and 30.20. The second set has selector parameters for both the minimum (30.21) and maximum (30.22) limits that allows the use of a selectable analog source (such as an analog input). Note: In addition to the user-defined limits, torque may be limited for other reasons (such as power limitation). See the block diagram on page 562 .	Torque limit set 1
	Torque limit set 1	0 (minimum torque limit defined by 30.19 and maximum torque limit defined by 30.20 are active).	0
	Torque limit set 2	1 (minimum torque limit selected by 30.21 and maximum torque limit defined by 30.22 are active).	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8...10
	EFB	Only for the DCU profile. DCU control word bit 15 received through the embedded fieldbus interface.	11
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	

No.	Name/Value	Description	Def/FbEq16
30.19	Minimum torque 1	Defines a minimum torque limit for the drive (in percent of nominal motor torque). See diagram at parameter 30.18 Torq lim sel. The limit is effective when - the source selected by 30.18 Torq lim sel is 0 , or - 30.18 is set to Torque limit set 1 .	-300.0\%
	-1600.0...0.0\%	Minimum torque limit 1.	See par. 46.03
30.20	Maximum torque 1	Defines a maximum torque limit for the drive (in percent of nominal motor torque). See diagram at parameter 30.18 Torq lim sel. The limit is effective when - the source selected by 30.18 Torq lim sel is 0 , or - 30.18 is set to Torque limit set 1 .	300.0\%
	0.0...1600.0\%	Maximum torque 1.	See par. 46.03
30.21	Min torque 2 source	Defines the source of the minimum torque limit for the drive (in percent of nominal motor torque) when - the source selected by parameter 30.18 Torq lim sel is 1 , or - 30.18 is set to Torque limit set 2 . See diagram at 30.18 Torq lim sel. Note: Any positive values received from the selected source are inverted.	Minimum torque 2
	Zero	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	AI2 scaled	12.22 Al2 scaled value (see page 229).	2
	Reserved		3... 14
	PID	40.01 Process PID output actual (output of the process PID controller).	15
	Minimum torque 2	30.23 Minimum torque 2.	16
	Other	Source selection (see Terms and abbreviations on page 196).	-
30.22	Max torque 2 source	Defines the source of the maximum torque limit for the drive (in percent of nominal motor torque) when - the source selected by parameter 30.18 Torq lim sel is 1 , or - 30.18 is set to Torque limit set 2 . See diagram at 30.18 Torq lim sel. Note: Any negative values received from the selected source are inverted.	Maximum torque 2
	Zero	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2
	Reserved		3... 14
	PID	40.01 Process PID output actual (output of the process PID controller).	15
	Maximum torque 2	30.24 Maximum torque 2.	16
	Other	Source selection (see Terms and abbreviations on page 196).	-

No.	Name/Value	Description	Def/FbEq16
30.23	Minimum torque 2	Defines the minimum torque limit for the drive (in percent of nominal motor torque) when - the source selected by 30.18 Torq lim sel is 1 , or - 30.18 is set to Torque limit set 2 and - 30.21 Min torque 2 source is set to Minimum torque 2. See diagram at 30.18 Torq lim sel.	-300.0\%
	-1600.0...0.0\%	Minimum torque limit 2.	See par. 46.03
30.24	Maximum torque 2	Defines the maximum torque limit for the drive (in percent of nominal motor torque) when The limit is effective when - the source selected by 30.18 Torq lim sel is 1 , or - 30.18 is set to Torque limit set 2 and - 30.22 Max torque 2 source is set to Maximum torque 2. See diagram at 30.18 Torq lim sel.	300.0\%
	0.0...1600.0\%	Maximum torque limit 2.	See par. 46.03
30.26	Power motoring limit	Defines the maximum allowed power fed by the inverter to the motor in percent of nominal motor power.	300.00\%
	0.00...600.00\%	Maximum motoring power.	1 = 1\%
30.27	Power generating limit	Defines the maximum allowed power fed by the motor to the inverter in percent of nominal motor power. Note: If your application, like a pump or a fan, requires that the motor must rotate in one direction only, use speed/ frequency limit (30.11 Minimum speed/30.13 Minimum frequency), or direction limit (20.21 Direction) to achieve this. Do not set parameter 30.19 Minimum torque 1 or 30.27 Power generating limit to 0%, as the drive is then not able to stop correctly.	-300.00\%
	-600.00...0.00\%	Maximum generating power.	1 = 1\%
30.30	Overvoltage control	Enables the overvoltage control of the intermediate DC link. Fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque. Note: If the drive is equipped with a brake chopper and resistor, or a regenerative supply unit, the controller must be disabled.	Enable
	Disable	Overvoltage control disabled.	0
	Enable	Overvoltage control enabled.	1
30.31	Undervoltage control	Enables the undervoltage control of the intermediate DC link. If the DC voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor torque in order to keep the voltage above the lower limit. By decreasing the motor torque, the inertia of the load will cause regeneration back to the drive, keeping the DC link charged and preventing an undervoltage trip until the motor coasts to a stop. This will act as a power-loss ride-through functionality in systems with high inertia, such as a centrifuge or a fan.	Enable
	Disable	Undervoltage control disabled.	0
	Enable	Undervoltage control enabled.	1

No.	Name/Value	Description	Def/FbEq16
30.35	Thermal current limitation	Enables/disables temperature-based output current limitation. The limitation should only be disabled if required by the application.	Enable
	Disable	Thermal current limitation disabled.	0
	Enable	Thermal current limitation enabled.	1
30.36	Speed limit selection	Selects a source that switches between two different predefined adjustable speed limit sets. $0=$ minimum speed limit defined by 30.11 and maximum speed limit defined by 30.12 are active $1=$ minimum speed limit selected by 30.37 and maximum speed limit defined by 30.38 are active The user can define two sets of speed limits, and switch between the sets using a binary source such as a digital input. The first set of limits is defined by parameters 30.11 Minimum speed and 30.12 Maximum speed. The second set has selector parameters for both the minimum (30.37) and maximum (30.38) limits that allows the use of a selectable analog source (such as an analog input).	Not selected
	Not selected	Adjustable speed limits are disabled. (Minimum speed limit defined by 30.11 Minimum speed and maximum speed limit defined by 30.12 Maximum speed are active).	0
	Selected	Adjustable speed limits are enabled. (Minimum speed limit defined by 30.37 Minimum speed source and maximum speed limit defined by 30.38 Maximum speed source are active).	1
	Ext1 active	Adjustable speed limits are enabled if EXT1 is active.	2
	Ext2 active	Adjustable speed limits are enabled if EXT2 is active.	3
	Torque control	Adjustable speed limits are enabled if Torque control mode (vector motor control) is active.	4
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	5
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	6
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	7

No.	Name/Value	Description	Def/FbEq16
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	8
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	9
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	10
	Reserved		11
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
30.37	Minimum speed source	Defines the source of a minimum speed limit for the drive when the source is selected by 30.36 Speed limit selection. Note: In vector motor control mode only. In scalar motor control mode, use frequency limits 30.13 and 30.14 .	Minimum speed
	Zero	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2
	Reserved		3... 10
	Minimum speed	30.11 Minimum speed.	11
	Other	Source selection (see Terms and abbreviations on page 196).	-
30.38	Maximum speed source	Defines the source of a maximum speed limit for the drive when the source is selected by 30.36 Speed limit selection. Note: In vector motor control mode only. In scalar motor control mode, use frequency limits 30.13 and 30.14 .	Maximum speed
	Zero	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2
	Reserved		3...11
	Maximum speed	30.12 Maximum speed.	12
	Other	Source selection (see Terms and abbreviations on page 196).	-
31 Fault functions		Configuration of external events; selection of behavior of the drive upon fault situations.	
31.01	External event 1 source	Defines the source of external event 1. See also parameter 31.02 External event 1 type. 0 = Trigger event 1 = Normal operation	Inactive (true)
	Active (false)	0.	0
	Inactive (true)	1.	1
	Reserved		2
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	3
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	4
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	5
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	6
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	7
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	8
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
31.02	External event 1 type	Selects the type of external event 1.	Fault
	Fault	The external event generates a fault.	0

No.	Name/Value	Description	Def/FbEq16
	Warning	The external event generates a warning.	1
31.03	External event 2 source	Defines the source of external event 2. See also parameter 31.04 External event 2 type. For the selections, see parameter 31.01 External event 1 source.	Inactive (true)
31.04	External event 2 type	Selects the type of external event 2.	Fault
	Fault	The external event generates a fault.	0
	Warning	The external event generates a warning.	1
31.05	External event 3 source	Defines the source of external event 3. See also parameter 31.06 External event 3 type. For the selections, see parameter 31.01 External event 1 source.	Inactive (true)
31.06	External event 3 type	Selects the type of external event 3.	Fault
	Fault	The external event generates a fault.	0
	Warning	The external event generates a warning.	1
31.07	External event 4 source	Defines the source of external event 4. See also parameter 31.08 External event 4 type. For the selections, see parameter 31.01 External event 1 source.	Inactive (true)
31.08	External event 4 type	Selects the type of external event 4.	Fault
	Fault	The external event generates a fault.	0
	Warning	The external event generates a warning.	1
31.09	External event 5 source	Defines the source of external event 5 . See also parameter 31.10 External event 5 type. For the selections, see parameter 31.01 External event 1 source.	Inactive (true)
31.10	External event 5 type	Selects the type of external event 5.	Fault
	Fault	The external event generates a fault.	0
	Warning	The external event generates a warning.	1
31.11	Fault reset selection	Selects the source of an external fault reset signal. The signal resets the drive after a fault trip if the cause of the fault no longer exists. 0 -> 1 = Reset Notes: - When the start and stop command is through digital inputs (parameter 20.01 Ext1 commands or 20.06 Ext2 commands) or from local control, and you want to use fault reset from the fieldbus, selection FBA A MCW bit 7 or EFB MCW bit 7 can be used. - Whenever the drive is in external control through fieldbus (start and stop command and reference are received through fieldbus), the fault can be reset from the fieldbus regardless of the selection of this parameter.	Not used
	Not used	0.	0
	Not used	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2

No.	Name/Value	Description	Def/FbEq16
31.13	Selectable fault	Defines the fault that can be automatically reset using parameter 31.12 Autoreset selection, bit 10. Faults are listed in chapter Fault tracing (page 493).	0000h
	0000h...FFFFh	Fault code.	$10=1$
31.14	Number of trials	Defines the maximum number of automatic resets that the drive is allowed to attempt within the time specified by 31.15 Total trials time. If the fault persists, subsequent reset attempts will be made at intervals defined by 31.16 Delay time. The faults to be automatically reset are defined by 31.12 Autoreset selection.	0
	0...5	Number of automatic resets.	$10=1$
31.15	Total trials time	Defines a time window for automatic fault resets. The maximum number of attempts made during any period of this length is defined by 31.14 Number of trials. Note: If the fault condition remains and cannot be reset, each reset attempt will generate an event and start a new time window. In practice, if the specified number of resets (31.14) at specified intervals (31.16) take longer than the value of 31.15 , the drive will continue to attempt resetting the fault until the cause is eventually removed.	30.0 s
	1.0...600.0 s	Time for automatic resets.	$10=1 \mathrm{~s}$
31.16	Delay time	Defines the time that the drive will wait after a fault before attempting an automatic reset. See parameter 31.12 Autoreset selection.	0.0 s
	0.0...120.0 s	Autoreset delay.	$10=1 \mathrm{~s}$
31.19	Motor phase loss	Selects how the drive reacts when a motor phase loss is detected. In scalar motor control mode: - The supervision activates above 10% of the motor nominal frequency. If any of the phase currents stays very small for a certain time limit, the output phase loss fault is given. - If the motor nominal current is below $1 / 6$ of the drive nominal current or there is no motor connected, ABB recommends to disable the motor output phase loss function.	Fault
	No action	No action taken.	0
	Fault	The drive trips on fault 3381 Output phase loss.	1
31.21	Supply phase loss	Selects how the drive reacts when a supply phase loss is detected.	Fault
	No action	No action taken.	0
	Fault	The drive trips on fault 3130 Input phase loss.	1

No.	Name/Value	Description				Def/FbEq16
31.22	STO indication run/stop	Selects which indications are given when one or both Safe torque off (STO) signals are switched off or lost. The indications also depend on whether the drive is running or stopped when this occurs. The tables at each selection below show the indications generated with that particular setting. When using Warning/Event/No indication and fieldbus control, check that the parameter 06.18 bit $7 \mathrm{STO}=0$ before giving start command. Notes: - This parameter does not affect the operation of the STO function itself. The STO function will operate regardless of the setting of this parameter: a running drive will stop upon removal of one or both STO signals, and will not start until both STO signals are restored and all faults reset. - The loss of only one STO signal always generates a fault as it is interpreted as a malfunction. With the CPTC-02 ATEX-certified thermistor protection module, follow the instructions given in the CPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (+L537+Q971) user's manual (3AXD50000030058 [English]. For more information on the STO, see chapter The Safe torque off function in the Hardware manual of the drive.				Faul/Fault
	Faul/Fault					0
		Inputs		Indication (running or stopped)		
		IN1	IN2			
		0	0	Fault 5091 S	afe torque off	
		0	1	Faults 5091 Sa FA81 Safe	fe torque off and torque off 1	
		1	0	Faults 5091 Sa FA82 Safe	fe torque off and torque off 2	
		1	1	(Normal	operation)	
	Fault/Warning	Inputs				1
				Indic	ation	
		IN1	IN2	Running	Stopped	
		0	0	Fault 5091 Safe torque off	Warning A5AO Safe torque off	
		0	1	Faults 5091 Safe torque off and FA81 Safe torque off 1	Warning A5AO Safe torque off and fault FA81 Safe torque off 1	
		1	0	Faults 5091 Safe torque off and FA82 Safe torque off 2	Warning A5AO Safe torque off and fault FA82 Safe torque off 2	
		1	1	(Normal operation)		

No.	Name/Value	Description	Def/FbEq16
31.24	Stall function	Selects how the drive reacts to a motor stall condition. A stall condition is defined as follows: - The drive exceeds the stall current limit (31.25 Stall current limit), and - the output frequency is below the level set by parameter 31.27 Stall frequency limit or the motor speed is below the level set by parameter 31.26 Stall speed limit, and - the conditions above have been true longer than the time set by parameter 31.28 Stall time.	No action
	No action	None (stall supervision disabled).	0
	Warning	The drive generates an A780 Motor stall warning.	1
	Fault	The drive trips on fault 7121 Motor stall.	2
31.25	Stall current limit	Stall current limit in percent of the nominal current of the motor. See parameter 31.24 Stall function.	200.0\%
	0.0...1600.0\%	Stall current limit.	-
31.26	Stall speed limit	Stall speed limit in rpm. See parameter 31.24 Stall function.	$\begin{aligned} & 150.00 \mathrm{rpm} ; \\ & 180.00 \mathrm{rpm} \\ & (95.2 \mathrm{bo}) \end{aligned}$
	$\begin{aligned} & \text { 0.00... } 10000.00 \\ & \mathrm{rpm} \end{aligned}$	Stall speed limit.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$
31.27	Stall frequency limit	Stall frequency limit. See parameter 31.24 Stall function. Note: Setting the limit below 10 Hz is not recommended.	$\begin{array}{\|l\|} \hline 15.00 \mathrm{~Hz} ; \\ 18.00 \mathrm{~Hz} \\ (95.20 \mathrm{b0}) \end{array}$
	0.00... 1000.00 Hz	Stall frequency limit.	See par. 46.02
31.28	Stall time	Stall time. See parameter 31.24 Stall function.	20 s
	$0 . .3600 \mathrm{~s}$	Stall time.	-

No.	Name/Value	Description	Def/FbEq16
31.30	Overspeed trip margin	Defines, together with 30.11 Minimum speed and 30.12 Maximum speed, the maximum allowed speed of the motor (overspeed protection). If the speed (24.02 Used speed feedback) exceeds the speed limit defined by parameter 30.11 or 30.12 by more than the value of this parameter, the drive trips on the 7310 Overspeed fault. WARNING! This function only supervises the speed in vector motor control mode. The function is not effective in scalar motor control mode. Example: If the maximum speed is 1420 rpm and speed trip margin is 300 rpm , the drive trips at 1720 rpm .	$\begin{aligned} & 500.00 \mathrm{rpm} ; \\ & 500.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & 0.00 \ldots 10000.00 \\ & \mathrm{rpm} \end{aligned}$	Overspeed trip margin.	$\begin{aligned} & \text { See par. } \\ & 46.01 \end{aligned}$

No.	Name/Value	Description	Def/FbEq16
31.31	Frequency trip margin	Defines, together with 30.13 Minimum frequency and 30.14 Maximum frequency, the maximum allowed frequency of the motor (overfrequency protection). The absolute value of this overfrequency trip level is calculated by adding the value of this parameter to the higher of the absolute values of 30.13 Minimum frequency and 30.14 Maximum frequency. If the output frequency (01.06 Output frequency) exceeds the overfrequency trip level (ie. the absolute value of the output frequency exceeds the absolute value of the overfrequency trip level), the drive trips on the 73F0 Overfrequency fault.	15.00 Hz
	0.00...10000.00 Hz	Overfrequency trip margin.	$1=1 \mathrm{~Hz}$
31.32	Emergency ramp supervision	Parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay, together with the derivative of 24.02 Used speed feedback, provide a supervision function for emergency stop modes Off1 and Off3. The supervision is based on either - observing the time within which the motor stops, or - comparing the actual and expected deceleration rates. If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.33. Otherwise, 31.32 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters $23.11 \ldots . .23 .15$ (Off1) or 23.23 Emergency stop time (Off3). If the actual deceleration rate (24.02) deviates too much from the expected rate, the drive trips on 73BO Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2 , and coasts to a stop. If 31.32 is set to 0% and 31.33 is set to 0 s , the emergency stop ramp supervision is disabled. See also parameter 21.04 Emergency stop mode.	0\%
	0...300\%	Maximum deviation from expected deceleration rate.	1 = 1\%

No.	Name/Value	Description	Def/FbEq16
31.33	Emergency ramp supenvision delay	If parameter 31.32 Emergency ramp supervision is set to 0\%, this parameter defines the maximum time an emergency stop (mode Off1 or Off3) is allowed to take. If the motor has not stopped when the time elapses, the drive trips on 73B0 Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2, and coasts to a stop. If 31.32 is set to a value other than 0%, this parameter defines a delay between the receipt of the emergency stop command and the activation of the supervision. ABB recommends to specify a short delay to allow the speed change rate to stabilize.	0 s
	0...100 s	Maximum ramp-down time, or supervision activation delay.	1 = 1 s
31.35	Main fan fault function	Selects how the drive reacts when a main cooling fan speed problem is detected. For frame sizes R6 or larger only. An event is triggered according to the value of this parameter (fault, warning or no action) - if the rotation speed signal from the fan is lower than the measured fan maximum speed (determined during the fan ID run) - if the measured fan maximum speed is lower than the predefined minimum value.	Warning
	Fault	Drive trips on fault 5080 Fan.	0
	Warning	Drive generates warning A581 Fan.	1
	No action	No action taken.	2
31.36	Aux fan fault function	Selects how the drive reacts when an auxiliary fan problem is detected. Certain drive types (especially those protected to IP55) have an auxiliary fan built into the front cover as standard. If it is necessary to operate the drive without the front cover (for example, during commissioning), you can set the parameter to value No action within two minutes from powerup to temporarily suppress the fault or warning. Return the value to Fault or Warning afterwards. On frame sizes R1...R5, the auxiliary fan is attached to connector X10 and on frame sizes R6 and larger to connector X16.	Warning
	Fault	Drive trips on fault 5081 Auxiliary fan broken. The fault is suppressed for two minutes after power-up.	0
	Warning	Drive generates warning A582 Auxiliary fan missing. The warning is suppressed for two minutes after power-up.	1
	No action	No action taken.	2

No.	Name/Value	Description	Def/FbEq16
31.40	Disable warning messages	Selects warnings to be suppressed. This parameter is a 16-bit word with each bit corresponding to a warning. Whenever a bit is set to 1, the corresponding warning is suppressed.	0000h

Bit	Name	Description	
0	Reserved		
1	DC link undervoltage	$1=$ Warning A3A2 DC link undervoltage is suppressed.	
$2 \ldots 4$	Reserved	Emergency stop (off2)	
5	Emergency stop (off1 or off3)	$1=$ Warning AFE1 Emergency stop (off2) is suppressed. suppressed.	
6	Reserved		
$7 \ldots 15$			

| | 0000h...FFFFh | Word for disabling warnings. |
| :--- | :--- | :--- | $11=1$

32 Supervision	Configuration of signal supervision functions $1 \ldots 6$. Six values can be chosen to be monitored; a warning or fault is generated whenever predefined limits are exceeded. See also section Signal supervision (page 186).	
32.01 Supervision status	Signal supervision status word. Indicates whether the values monitored by the signal supervision functions are within or outside their respective limits. Note: This word is independent of the drive actions defined by parameters $32.06,32.16,32.26,32.36,32.46$ and 32.56.	0000 h

	Bit	Name		Description	
	0	Supervision 1 active		1 = Signal selected by 32.07 is outside its limits.	
	1	Supervision 2 active		1 = Signal selected by 32.17 is outside its limits.	
	2	Supervision 3 active		1 = Signal selected by 32.27 is outside its limits.	
	3	Supervision 4 active		1 = Signal selected by 32.37 is outside its limits.	
	4	Supervision 5 active		1 = Signal selected by 32.47 is outside its limits.	
	5	Supervision 6 active		1 = Signal selected by 32.27 is outside its limits.	
	6... 15	Reserved			
	0000h...FFFFh		Signal supervision status word.		1 = 1
32.05	Supervision 1 function		Selects the mode of signal supervision function 1. Determines how the monitored signal (see parameter 32.07) is compared to its lower and upper limits (32.09 and 32.10 respectively). The action to be taken when the condition is fulfilled is selected by 32.06 .		Disabled
	Disabled		Signal supervision 1 not in use.		0
	Low		Action is taken whenever the signal falls below its lower limit.		1
	High		Action is taken whenever the signal rises above its upper limit.		2

No.	Name/Value	Description	Def/FbEq16
	Abs low	Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit.	3
	Abs high	Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit.	4
	Both	Action is taken whenever the signal falls below its low limit or rises above its high limit.	5
	Abs both	Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit.	6
	Hysteresis	Action is taken whenever the signal rises above the value defined by the upper limit + 0.5 - hysteresis range (32.11 Supervision 1 hysteresis). The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 hysteresis range.	7
32.06	Supervision 1 action	Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 1 exceeds its limits. Note: This parameter does not affect the status indicated by 32.01 Supervision status.	No action
	No action	No warning or fault generated.	0
	Warning	Warning A8B0 ABB Signal supervision 1 is generated.	1
	Fault	Drive trips on fault 80B0 Signal supervision 1.	2
	Fault if running	If running, the drive trips on fault 80B0 Signal supervision 1.	3
32.07	Supervision 1 signal	Selects the signal to be monitored by signal supervision function 1.	Frequency
	Zero	None.	0
	Speed	01.01 Motor speed used (page 199).	1
	Reserved		2
	Frequency	01.06 Output frequency (page 199).	3
	Current	01.07 Motor current (page 199).	4
	Reserved		5
	Torque	01.10 Motor torque (page 199).	6
	DC voltage	01.11 DC voltage (page 199).	7
	Output power	01.14 Output power (page 200).	8
	Al1	12.11 Al1 actual value (page 227).	9
	Al2	12.21 Al2 actual value (page 229).	10
	Reserved		11... 17
	Speed ref ramp in	23.01 Speed ref ramp input (page 276).	18
	Speed ref ramp out	23.02 Speed ref ramp output (page 276).	19
	Speed ref used	24.01 Used speed reference (page 280).	20
	Torque ref used	26.02 Torque reference used (page 286).	21
	Freq ref used	28.02 Frequency ref ramp output (page 291).	22
	Inverter temperature	05.11 Inverter temperature (page 205).	23
	Process PID output	40.01 Process PID output actual (page 353).	24

No.	Name/Value	Description	Def/FbEq16
	Process PID feedback	40.02 Process PID feedback actual (page 353).	25
	Process PID setpoint	40.03 Process PID setpoint actual (page 353).	26
	Process PID deviation	40.04 Process PID deviation actual (page 353).	27
	Other	Source selection (see Terms and abbreviations on page 196).	-
32.08	Supervision 1 filter time	Defines a filter time constant for the signal monitored by signal supervision 1.	0.000 s
	$0.000 \ldots 30.000$ s	Signal filter time.	$1000=1 \mathrm{~s}$
32.09	Supervision 1 low	Defines the lower limit for signal supervision 1.	0.00
	$\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Low limit.	-
32.10	Supervision 1 high	Defines the upper limit for signal supervision 1.	0.00
	$\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Upper limit.	-
32.11	Supervision 1 hysteresis	Defines the hysteresis for the signal monitored by signal supervision 1. This parameter applies to all selections for parameter 32.35 Supervision 4 function, not just Hysteresis (selection 7). Action is taken whenever the signal rises above the value defined by the upper limit $+0.5 \cdot$ hysteresis. The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 - hysteresis.	0.00
	0.00... 100000.00	Hysteresis.	-
32.15	Supervision 2 function	Selects the mode of signal supervision function 2. Determines how the monitored signal (see parameter 32.17) is compared to its lower and upper limits (32.19 and 32.20 respectively). The action to be taken when the condition is fulfilled is selected by 32.16.	Disabled
	Disabled	Signal supervision 2 not in use.	0
	Low	Action is taken whenever the signal falls below its lower limit.	1
	High	Action is taken whenever the signal rises above its upper limit.	2
	Abs low	Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit.	3
	Abs high	Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit.	4
	Both	Action is taken whenever the signal falls below its low limit or rises above its high limit.	5
	Abs both	Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit.	6
	Hysteresis	Action is taken whenever the signal rises above the value defined by the upper limit $+0.5 \cdot$ hysteresis range (32.21 Supervision 2 hysteresis). The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 hysteresis range.	7

No.	Name/Value	Description	Def/FbEq16
32.16	Supervision 2 action	Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 2 exceeds its limits. Note: This parameter does not affect the status indicated by 32.01 Supervision status.	No action
	No action	No warning or fault generated.	0
	Warning	Warning A8B1 ABB Signal supervision 2 is generated.	1
	Fault	Drive trips on fault 80B1 Signal supervision 2.	2
	Fault if running	If running, the drive trips on fault 80B0 Signal supervision 1.	3
32.17	Supervision 2 signal	Selects the signal to be monitored by signal supervision function 2. For the available selections, see parameter 32.07 Supervision 1 signal.	Current
32.18	Supervision 2 filter time	Defines a filter time constant for the signal monitored by signal supervision 2.	0.000 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Signal filter time.	$1000=1 \mathrm{~s}$
32.19	Supervision 2 low	Defines the lower limit for signal supervision 2.	0.00
	$\begin{aligned} & -21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Low limit.	-
32.20	Supervision 2 high	Defines the upper limit for signal supervision 2.	0.00
	$\begin{aligned} & -21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Upper limit.	-
32.21	Supervision 2 hysteresis	Defines the hysteresis for the signal monitored by signal supervision 2. This parameter applies to all selections for parameter 32.35 Supervision 4 function, not just Hysteresis (selection 7). Action is taken whenever the signal rises above the value defined by the upper limit +0.5 hysteresis. The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 • hysteresis.	0.00
	0.00...100000.00	Hysteresis.	-
32.25	Supervision 3 function	Selects the mode of signal supervision function 3. Determines how the monitored signal (see parameter 32.27) is compared to its lower and upper limits (32.29 and 32.30 respectively). The action to be taken when the condition is fulfilled is selected by 32.26 .	Disabled
	Disabled	Signal supervision 3 not in use.	0
	Low	Action is taken whenever the signal falls below its lower limit.	1
	High	Action is taken whenever the signal rises above its upper limit.	2
	Abs low	Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit.	3
	Abs high	Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit.	4
	Both	Action is taken whenever the signal falls below its low limit or rises above its high limit.	5
	Abs both	Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit.	6

No.	Name/Value	Description	Def/FbEq16
	Hysteresis	Action is taken whenever the signal rises above the value defined by the upper limit +0.5 - hysteresis range (32.31 Supervision 3 hysteresis). The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 • hysteresis range.	7
32.26	Supervision 3 action	Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 3 exceeds its limits. Note: This parameter does not affect the status indicated by 32.01 Supervision status.	No action
	No action	No warning or fault generated.	0
	Warning	Warning A8B2 ABB Signal supervision 3 is generated.	1
	Fault	Drive trips on fault 80B2 Signal supervision 3.	2
	Fault if running	If running, the drive trips on fault 80B0 Signal supervision 1.	3
32.27	Supervision 3 signal	Selects the signal to be monitored by signal supervision function 3. For the available selections, see parameter 32.07 Supervision 1 signal.	Torque
32.28	Supervision 3 filter time	Defines a filter time constant for the signal monitored by signal supervision 3.	0.000 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Signal filter time.	$1000=1 \mathrm{~s}$
32.29	Supervision 3 low	Defines the lower limit for signal supervision 3.	0.00
	$\begin{aligned} & -21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Low limit.	-
32.30	Supervision 3 high	Defines the upper limit for signal supervision 3.	0.00
	$\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Upper limit.	-
32.31	Supervision 3 hysteresis	Defines the hysteresis for the signal monitored by signal supervision 3. This parameter applies to all selections for parameter 32.35 Supervision 4 function, not just Hysteresis (selection 7). Action is taken whenever the signal rises above the value defined by the upper limit +0.5 - hysteresis. The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 • hysteresis.	0.00
	0.00... 100000.00	Hysteresis.	-
32.35	Supervision 4 function	Selects the mode of signal supervision function 4. Determines how the monitored signal (see parameter 32.37) is compared to its lower and upper limits (32.39 and 32.30 respectively). The action to be taken when the condition is fulfilled is selected by 32.36 .	Disabled
	Disabled	Signal supervision 4 not in use.	0
	Low	Action is taken whenever the signal falls below its lower limit.	1
	High	Action is taken whenever the signal rises above its upper limit.	2
	Abs low	Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit.	3
	Abs high	Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit.	4

\qquad

No.	Name/Value	Description	Def/FbEq16
	Both	Action is taken whenever the signal falls below its low limit or rises above its high limit.	5
	Abs both	Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit.	6
	Hysteresis	Action is taken whenever the signal rises above the value defined by the upper limit $+0.5 \cdot$ hysteresis range (32.41 Supervision 4 hysteresis). The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 hysteresis range.	7
32.36	Supervision 4 action	Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 4 exceeds its limits. Note: This parameter does not affect the status indicated by 32.01 Supervision status.	No action
	No action	No warning or fault generated.	0
	Warning	Warning A8B3 ABB Signal supervision 4 is generated.	1
	Fault	Drive trips on fault 80B3 Signal supervision 4.	2
	Fault if running	Drive trips on fault $80 B 0$ Signal supervision 1 if the motor is running.	3
32.37	Supervision 4 signal	Selects the signal to be monitored by signal supervision function 4. For the available selections, see parameter 32.07 Supervision 1 signal.	Zero
32.38	Supervision 4 filter time	Defines a filter time constant for the signal monitored by signal supervision 4.	0.000 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Signal filter time.	$1000=1 \mathrm{~s}$
32.39	Supervision 4 low	Defines the lower limit for signal supervision 4.	0.00
	$\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Low limit.	-
32.40	Supervision 4 high	Defines the upper limit for signal supervision 4.	0.00
	$\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Upper limit.	-
32.41	Supervision 4 hysteresis	Defines the hysteresis for the signal monitored by signal supervision 4. This parameter applies to all selections for parameter 32.35 Supenvision 4 function, not just Hysteresis (selection 7). Action is taken whenever the signal rises above the value defined by the upper limit +0.5 ' hysteresis. The action is deactivated when the signal falls below the value defined by the lower limit - $0.5 \cdot$ hysteresis.	0.00
	0.00...100000.00	Hysteresis.	-
32.45	Supervision 5 function	Selects the mode of signal supervision function 5 . Determines how the monitored signal (see parameter 32.47) is compared to its lower and upper limits (32.49 and 32.40 respectively). The action to be taken when the condition is fulfilled is selected by 32.46 .	Disabled
	Disabled	Signal supervision 5 not in use.	0
	Low	Action is taken whenever the signal falls below its lower limit.	1
	High	Action is taken whenever the signal rises above its upper limit.	2

No.	Name/Value	Description	Def/FbEq16
	Abs low	Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit.	3
	Abs high	Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit.	4
	Both	Action is taken whenever the signal falls below its low limit or rises above its high limit.	5
	Abs both	Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit.	6
	Hysteresis	Action is taken whenever the signal rises above the value defined by the upper limit $+0.5 \cdot$ hysteresis range (32.51 Supervision 5 hysteresis). The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 • hysteresis range.	7
32.46	Supervision 5 action	Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 5 exceeds its limits. Note: This parameter does not affect the status indicated by 32.01 Supervision status.	No action
	No action	No warning or fault generated.	0
	Warning	Warning A8B4 ABB Signal supervision 5 is generated.	1
	Fault	Drive trips on fault 80B4 Signal supervision 5.	2
	Fault if running	Drive trips on fault 80B0 Signal supervision 1 if the motor is running.	3
32.47	Supervision 5 signal	Selects the signal to be monitored by signal supervision function 5 . For the available selections, see parameter 32.07 Supervision 1 signal.	Zero
32.48	Supervision 5 filter time	Defines a filter time constant for the signal monitored by signal supervision 5 .	0.000 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Signal filter time.	$1000=1 \mathrm{~s}$
32.49	Supervision 5 low	Defines the lower limit for signal supervision 5.	0.00
	$\begin{aligned} & -21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Low limit.	-
32.50	Supervision 5 high	Defines the upper limit for signal supervision 5.	0.00
	$\begin{aligned} & -21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Upper limit.	-
32.51	Supervision 5 hysteresis	Defines the hysteresis for the signal monitored by signal supervision 5. This parameter applies to all selections for parameter 32.35 Supervision 4 function, not just Hysteresis (selection 7). Action is taken whenever the signal rises above the value defined by the upper limit $+0.5 \cdot$ hysteresis. The action is deactivated when the signal falls below the value defined by the lower limit - $0.5 \cdot$ hysteresis.	0.00
	0.00...100000.00	Hysteresis.	-

No.	Name/Value	Description	Def/FbEq16
32.55	Supervision 6 function	Selects the mode of signal supervision function 6 . Determines how the monitored signal (see parameter 32.57) is compared to its lower and upper limits (32.59 and 32.50 respectively). The action to be taken when the condition is fulfilled is selected by 32.56 .	Disabled
	Disabled	Signal supervision 6 not in use.	0
	Low	Action is taken whenever the signal falls below its lower limit.	1
	High	Action is taken whenever the signal rises above its upper limit.	2
	Abs low	Action is taken whenever the absolute value of the signal falls below its (absolute) lower limit.	3
	Abs high	Action is taken whenever the absolute value of the signal rises above its (absolute) upper limit.	4
	Both	Action is taken whenever the signal falls below its low limit or rises above its high limit.	5
	Abs both	Action is taken whenever the absolute value of the signal falls below its (absolute) low limit or rises above its (absolute) high limit.	6
	Hysteresis	Action is taken whenever the signal rises above the value defined by the upper limit $+0.5 \cdot$ hysteresis range (32.61 Supervision 6 hysteresis). The action is deactivated when the signal falls below the value defined by the lower limit - 0.5 hysteresis range.	7
32.56	Supervision 6 action	Selects whether the drive generates a fault, warning or neither when the value monitored by signal supervision 6 exceeds its limits. Note: This parameter does not affect the status indicated by 32.01 Supervision status.	No action
	No action	No warning or fault generated.	0
	Warning	Warning A8B5 ABB Signal supervision 6 is generated.	1
	Fault	Drive trips on fault 80B5 Signal supervision 6.	2
	Fault if running	Drive trips on fault 80B0 Signal supervision 1 if the motor is running.	3
32.57	Supervision 6 signal	Selects the signal to be monitored by signal supervision function 6. For the available selections, see parameter 32.07 Supervision 1 signal.	Zero
32.58	Supervision 6 filter time	Defines a filter time constant for the signal monitored by signal supervision 6 .	0.000 s
	$0.000 \ldots 30.000 \mathrm{~s}$	Signal filter time.	$1000=1 \mathrm{~s}$
32.59	Supervision 6 low	Defines the lower limit for signal supervision 6.	0.00
	$\begin{aligned} & -21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Low limit.	-
32.60	Supervision 6 high	Defines the upper limit for signal supervision 6.	0.00
	$\begin{aligned} & \hline-21474836.00 \ldots \\ & 21474836.00 \end{aligned}$	Upper limit.	-

No.	Name/Value	Description	Def/FbEq16
32.61	Supervision 6 hysteresis	Defines the hysteresis for the signal monitored by signal supervision 6. This parameter applies to all selections for parameter 32.35 Supervision 4 function, not just Hysteresis (selection 7).	0.00
	Action is taken whenever the signal rises above the value defined by the upper limit + 0.5 \cdot hysteresis. The action is deactivated when the signal falls below the value defined by the lower limit -0.5 • hysteresis.		
	$0.00 \ldots 100000.00$	Hysteresis.	-

34 Timed functions	Configuration of the timed functions. See also section Timed functions (page 149).	
34.01	Timed functions status	Status of the combined timers. The status of a combined timer is the logical OR of all timers connected to it. This parameter is read-only.
\qquadBit Name - 0 Timed function 1 1 = Active. 1 Timed function 2 $1=$ Active. 2 Timed function 3 1 = Active. $3 . . .15$ Reserved		

$\left.\begin{array}{|l|l|l|}\hline & \text { 0000h...0FFFFh } & \text { Status of combined timers } 1 \ldots 3 .\end{array}\right]$| $1=1$ |
| :--- |
| $34.02 \quad$ Timer status | | Status of timers $1 \ldots 12$. |
| :--- |
| This parameter is read-only. |

Bit	Name	Description
0	Timer 1	1 = Active.
1	Timer 2	$1=$ Active.
2	Timer 3	$1=$ Active.
3	Timer 4	1 = Active.
4	Timer 5	$1=$ Active.
5	Timer 6	$1=$ Active.
6	Timer 7	$1=$ Active.
7	Timer 8	$1=$ Active.
8	Timer 9	$1=$ Active.
9	Timer 10	$1=$ Active.
10	Timer 11	$1=$ Active.
11	Timer 12	$1=$ Active.
$12 \ldots 15$	Reserved	

0000h...FFFFh \quad Timer status. $\quad 1=1$

No.	Name/Value	Description		Def/FbEq16
34.04	Season/exception day status	Status of seasons $1 \ldots 4$, exception weekday and exception holiday. Only one season can be active at a time. A day can be a workday and a holiday at the same time. This parameter is read-only.		-
	Name		Description	
	Season 1		1 = Active.	
	Season 2		1 = Active.	
	Season 3		1 = Active.	
	Season 4		1 = Active.	
	Reserved			
	Exception workday		1 = Active.	
	Exception holiday		1 = Active.	
	Reserved			
	0000h...FFFFh	Status of the seasons and exception weekday and holiday.		1 = 1
34.10	Timed functions enable	Selects the source for the timed functions enable signal. 0 = Disabled. 1 = Enabled.		Disabled
	Disabled	0.		0
	Enabled	1.		1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).		2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).		3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).		4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).		5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).		6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).		7
	Other [bit]	Source selection (see Terms and abbreviations on page 196).		-

No.	Name/Value	Description	Def/FbEq16
34.11	Timer 1 configuration	Defines when timer 1 is active.	00000111
		10000000 b	

Bit	Name	Description
0	Monday	1 = Monday is an active start day.
1	Tuesday	1 = Tuesday is an active start day.
2	Wednesday	1 = Wednesday is an active start day.
3	Thursday	1 = Thursday is an active start day.
4	Friday	1 = Friday is an active start day.
5	Saturday	1 = Saturday is an active start day.
6	Sunday	1 = Sunday is an active start day.
7	Season 1	1 = Timer is active in season 1.
8	Season 2	1 = Timer is active in season 2.
9	Season 3	1 = Timer is active in season 3.
10	Season 4	1 = Timer is active in season 4.
11	Exceptions	$0=$ Exceptions days are disabled. The timer follows only weekday and season settings (bits $0 . . .10$ in the timer configuration) and the start time and duration of the timer (see 34.12 and 34.13). Exception day settings, parameters 34.70...34.90, do not have any effect on this timer. 1 = Exception days are enabled. The timer is active during the weekdays and seasons defined with bits $0 \ldots 10$ and the times defined by 34.12 and 34.13 . In addition, the timer is active during the exception days defined with bit 12, bit 13 and parameters 34.70...34.90. If bit 12 and bit 13 are both zero, the timer is inactive during the exception days.
12	Holidays	This bit has no effect unless bit 11 = 1 (Exceptions days are enabled). When bits 11 and 12 are both 1 , the timer is active during the weekdays and seasons defined with bits $0 . . .10$ and times defined by parameters 34.12 and 34.13. In addition, the timer is active when the ongoing day is defined as Exception day Holiday by parameters $34.70 \ldots 34.90$ and the current time matches with the time range defined by 34.12 and 34.13 . During Exception days, weekday and season bits are ignored.
13	Workdays	This bit has no effect unless bit 11 = 1 (Exceptions enabled). When bits 11 and 13 are both 1 , the Timer is active during the weekdays and seasons defined with bits $0 . . .10$ and the times defined by parameters 34.12 and 34.13. In addition, the timer is active when the ongoing day is defined as Exception day Workday by parameters $34.70 \ldots 34.90$ and the current time matches with the time range defined by 34.12 and 34.13 . During Exception days, weekday and season bits are ignored.
14... 15	Reserved	

No.								Description								
	Examples of how the timer configuration defines when the Timer is active are shown below.															
	Bits of parameter 34.11 Timer 1 configuration															
							$\left\{\begin{array}{l} \frac{\lambda}{0} \\ \frac{0}{2} \\ \frac{c}{5} \\ 0 \end{array}\right.$			$\begin{aligned} & \underset{0}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	-				
	1	1	1	1	1	1	1	1	1	1	1	0	0	0	Example 1: Timer is active during the times of the day defined by other parameters every Weekday and every Season. Exception day settings (34.70...34.90) do not have any effect on the Timer.	
	1	1	1	1	1	0	0	1	1	1	1	0	0	0	Example 2: Timer is active during the times of the day defined by other parameters from Mon to Fri, every Season. Exception day settings (34.70...34.90) do not have any effect on the Timer.	
	1	1	1	1	1	0	0	0	0	1	0	0	0	0	Example 3: Timer is active during the times of the day defined by other parameters from Mon to Fri, only during Season 3 (can be configured as, for example, summer). Exception day settings (34.70...34.90) do not have any effect on the Timer.	
	1	1	1	1	1	0	0	1	1	1	1	1	1	0	Example 4: Timer is active during the times of the day defined by other parameters from Mon to Fri, every Season. In addition, the Timer is active every Exception day Holidays, regardless what is the day or season.	
	1	0	1	0	1	0	1	1	1	0	0	1	0	1	Example 5: Timer is active during the times of the day defined by other parameters on Mon, Wed, Fri and Sun, during Season1 and Season 2. In addition, the Timer is active every Exception day Workdays, regardless what is the day or season.	
	1	1	1	1	1	1	1	1	1	1	1	1	0	0	Example 6: Timer is active during the times of the day defined by other parameters every Weekday and every Season. The Timer is inactive during all Exception days.	
	0000h...FFFFh							Configuration of timer 1.								1 = 1
34.12	Timer 1 start time							Defines the daily start time of timer 1. The time can be changed in second steps. The timer can be started at an other time than the start time. For example, if the timer's duration is more than one day and the active session starts during the time, the timer is started at 00:00 and stopped when there is no duration left.								00:00:00
	00:00:00...23:59:59							Daily start time of the timer.								$1=1$

No.	Name/Value	Description	Def/FbEq16
34.13	Timer 1 duration	Defines the duration of timer 1. The duration can be changed in minute steps. The duration can extend over the change of the day but if an exception day becomes active, the period is interrupted at midnight. In the same way the period started on an exception day stays active only until the end of the day, even if the duration is longer. The timer will continue after a break if there is duration left.	00 00:00
	00 00:00... 07 00:00	Timer duration.	1 = 1
34.14	Timer 2 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.15	Timer 2 start time	See 34.12 Timer 1 start time.	00:00:00
34.16	Timer 2 duration	See 34.13 Timer 1 duration.	00 00:00
34.17	Timer 3 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.18	Timer 3 start time	See 34.12 Timer 1 start time.	00:00:00
34.19	Timer 3 duration	See 34.13 Timer 1 duration.	00 00:00
34.20	Timer 4 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 b \end{aligned}$
34.21	Timer 4 start time	See 34.12 Timer 1 start time.	00:00:00
34.22	Timer 4 duration	See 34.13 Timer 1 duration.	00 00:00
34.23	Timer 5 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.24	Timer 5 start time	See 34.12 Timer 1 start time.	00:00:00
34.25	Timer 5 duration	See 34.13 Timer 1 duration.	00 00:00
34.26	Timer 6 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.27	Timer 6 start time	See 34.12 Timer 1 start time.	00:00:00
34.28	Timer 6 duration	See 34.13 Timer 1 duration.	00 00:00
34.29	Timer 7 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.30	Timer 7 start time	See 34.12 Timer 1 start time.	00:00:00
34.31	Timer 7 duration	See 34.13 Timer 1 duration.	00 00:00
34.32	Timer 8 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.33	Timer 8 start time	See 34.12 Timer 1 start time.	00:00:00
34.34	Timer 8 duration	See 34.13 Timer 1 duration.	00 00:00
34.35	Timer 9 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 b \end{aligned}$
34.36	Timer 9 start time	See 34.12 Timer 1 start time.	00:00:00
34.37	Timer 9 duration	See 34.13 Timer 1 duration.	00 00:00
34.38	Timer 10 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.39	Timer 10 start time	See 34.12 Timer 1 start time.	00:00:00
34.40	Timer 10 duration	See 34.13 Timer 1 duration.	00 00:00
34.41	Timer 11 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$

No.	Name/Value	Description	Def/FbEq16
34.42	Timer 11 start time	See 34.12 Timer 1 start time.	00:00:00
34.43	Timer 11 duration	See 34.13 Timer 1 duration.	00 00:00
34.44	Timer 12 configuration	See 34.11 Timer 1 configuration.	$\begin{aligned} & \hline 00000111 \\ & 10000000 \mathrm{~b} \end{aligned}$
34.45	Timer 12 start time	See 34.12 Timer 1 start time.	00:00:00
34.46	Timer 12 duration	See 34.13 Timer 1 duration.	00 00:00
34.60	Season 1 start date	Defines the start date of season 1 in format dd.mm, where dd is the number of the day and mm is the number of the month. The season changes at midnight. One season can be active at a time. Timers are started on exception days even if they are not inside the active season. The season start dates (1..4) must be given in increasing order to use all seasons. The default value is interpreted that the season is not configured. If the season start dates are not in increasing order and the value is something else than the default value, a season configuration warning is given.	01.01.
	01.01...31.12	Season start date.	
34.61	Season 2 start date	Defines the start date of season 2. See 34.60 Season 1 start date.	01.01.
34.62	Season 3 start date	Defines the start date of season 3. See 34.60 Season 1 start date.	01.01.
34.63	Season 4 start date	Defines the start date of season 4. See 34.60 Season 1 start date.	01.01.
34.70	Number of active exceptions	Defines how many of the exceptions are active by specifying the last active one. All preceding exceptions are active. Exceptions $1 \ldots 3$ are periods (duration can be defined) and exceptions $4 \ldots 16$ are days (duration is always 24 hours). Example: If the value is 4 , exceptions $1 \ldots 4$ are active, and exceptions 5... 16 are not active.	3
	0... 16	Number of active exception periods or days.	-

	0000h...FFFFh	Types of exception period or days.	$1=1$
34.72	Exception 1 start	Defines the start date of the exception period in format dd.mm, where dd is the number of the day and mm is the number of the month. The timer started on an exception day is always stopped at $23: 59: 59$ even if it has duration left. The same date can be configured to be holiday and workday. The date is active if any of exception days are active.	01.01.
		$01.01 \ldots .31 .12$.	Start date of exception period 1.

No.	Name/Value		Description		Def/FbEq16
34.83	Exception day 9		See 34.79 Exception day 4.		01.01
34.84	Exception day 10		See 34.79 Exception day 4.		01.01
34.85	Exception day 11		See 34.79 Exception day 4.		01.01
34.86	Exception day 12		See 34.79 Exception day 4.		01.01
34.87	Exception day 13		See 34.79 Exception day 4.		01.01
34.88	Exception day 14		See 34.79 Exception day 4.		01.01
34.89	Exception day 15		See 34.79 Exception day 4.		01.01
34.90	Exception day 16		See 34.79 Exception day 4.		01.01
34.100	Timed function 1		Defines which timers are connected to combined timer 1. $0=$ Not connected. 1 = Connected. See 34.01 Timed functions status.		0000h
	Bit	Name		Description	
	0	Timer 1		0 = Inactive. 1 = Active.	
	1	Timer 2		0 = Inactive. 1 = Active.	
	2	Timer 3		0 = Inactive. 1 = Active.	
	3	Timer 4		$0=$ Inactive. 1 = Active.	
	4	Timer 5		$0=$ Inactive. 1 = Active.	
	5	Timer 6		$0=$ Inactive. 1 = Active.	
	6	Timer 7		$0=$ Inactive. 1 = Active .	
	7	Timer 8		0 = Inactive. 1 = Active.	
	8	Timer 9		$0=$ Inactive. 1 = Active.	
	9	Timer 10		0 = Inactive. 1 = Active.	
	10	Timer 11		0 = Inactive. 1 = Active.	
	11	Timer 12		0 = Inactive. 1 = Active.	
	0000h...FFFFh		Timers connected to combined timer 1.		1 = 1
34.101	Timed function 2		Defines which timers are connected to combined timer 2. See 34.01 Timed functions status.		0000h
34.102	Timed function 3		Defines which timers are connected to combined timer 3. See 34.01 Timed functions status.		0000h
34.110	Boost time function		Defines which combined timers (that is, timers that are connected to the combined timers) are activated with the extra time function.		0000h
	Bit ${ }^{\text {Name }}$			Description	
	0 Timed function 1			0 = Inactive. 1 = Active .	
		Timed function 2		0 = Inactive. 1 = Active.	
	$\begin{array}{\|l\|} \hline 2 \\ \hline 3 \ldots 15 \\ \hline \end{array}$	Timed function 3		0 = Inactive. 1 = Active .	
		Reserved			
	0000h...	FFFFh	Comb	ers including the extra timer.	1 = 1

No.	Name/Value	Description	Def/FbEq16
34.111	Boost time activation source	Selects the source of extra time activation signal. $0 \text { = Disabled. }$ $1 \text { = Enabled. }$	Off
	Off	0.	0
	On	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
34.112	Boost time duration	Defines the time inside which the extra time is deactivated after extra time activation signal is switched off. Example: If parameter 34.111 Boost time activation source is set to DI1 and 34.112 Boost time duration is set to $0001: 30$, the extra time is active for 1 hour and 30 minutes after digital input DI is deactivated.	00 00:00
	00 00:00... 07 00:00	Extra time duration.	1 = 1

35 Motor thermal protection		Motor thermal protection settings such as temperature measurement configuration, load curve definition and motor fan control configuration. See also section Motor thermal protection (page 177).	
35.01	Motor estimated temperature	Displays the motor temperature as estimated by the internal motor thermal protection model (see parameters 35.50...35.55). The unit is selected by parameter 96.16 Unit selection. This parameter is read-only.	-
	$\begin{aligned} & -60 \ldots 1000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 1832^{\circ} \mathrm{F} \end{aligned}$	Estimated motor temperature.	$1=1^{\circ}$
35.02	Measured temperature 1	Displays the temperature received through the source defined by parameter 35.11 Temperature 1 source. The unit is selected by parameter 96.16 Unit selection. Notes: - With a PTC sensor, the unit is ohms. - With a PTC sensor connected DI6, the value shown is not a valid measurement. Either 0 ohm (normal temperature) or the value of parameter 35.12 Temperature 1 fault limit (excessive temperature) is shown. This parameter is read-only.	-
	$-60 \ldots 5000^{\circ} \mathrm{C}$ or -76... $9032^{\circ} \mathrm{F}$, 0... 5000 ohm or [35.12] ohm	Measured temperature 1.	1 = 1 unit

No.	Name/Value	Description	Def/FbEq16
35.03	Measured temperature 2	Displays the temperature received through the source defined by parameter 35.21 Temperature 2 source. The unit is selected by parameter 96.16 Unit selection. Notes: - With a PTC sensor, the unit is ohms. - With a PTC sensor connected DI6, the value shown is not a valid measurement. Either 0 ohm (normal temperature) or the value of parameter 35.12 Temperature 1 fault limit (excessive temperature) is shown. This parameter is read-only.	-
	$-60 \ldots 5000^{\circ} \mathrm{C}$ or $-76 . .9032{ }^{\circ} \mathrm{F}$, 0... 5000 ohm or [35.22] ohm	Measured temperature 2.	1 = 1 unit
35.05	Motor overload level	Shows the motor overload level as a percent of the motor overload fault limit. See parameter 35.56 Motor overload action and section Motor overload protection (page 182).	0.0
	0.0...300.0\%	Motor overload level. 0.0% No motor overloading 88.0\% Motor overloaded to warning level 100.0% Motor overloaded to fault level	$10=1 \%$
35.11	Temperature 1 source	Selects the source from which measured temperature 1 is read. Usually this source is from a sensor connected to the motor controlled by the drive, but it could be used to measure and monitor a temperature from other parts of the process as long as a suitable sensor is used as per the selection list.	Estimated temperature
	Disabled	None. Temperature monitoring function 1 is disabled.	0
	Estimated temperature	Estimated motor temperature (see parameter 35.01 Motor estimated temperature). The temperature is estimated from an internal drive calculation. It is important to set up the ambient temperature of the motor in 35.50 Motor ambient temperature.	1
	KTY84 analog I/O	KTY84 sensor connected to the analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	2
	Reserved		3... 4

No.	Name/Value	Description	Def/FbEq16
	$\begin{aligned} & 1 \times \mathrm{Pt} 100 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$	Pt100 sensor connected to a standard analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A I$ to V (volt). - In parameter group 13 Standard $A O$, set the source selection parameter of the analog output to Temp sensor 1 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	5
	$\begin{aligned} & 2 \times \mathrm{Pt100} \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$	As selection $1 \times$ Pt100 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	6
	$\begin{aligned} & \hline 3 \times \mathrm{Pt100} \text { analog } \\ & \text { I/O } \end{aligned}$	As selection $1 \times$ Pt 100 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	7
	PTC DI6	PTC sensor is connected to DI6. Note: With a PTC sensor connected DI6, the value shown is not a valid measurement. Either 0 ohm (normal temperature) or the value of parameter 35.22 Temperature 2 fault limit (excessive temperature) is shown.	8
	Reserved		9... 10
	Direct temperature	The temperature is taken from the source selected by parameter 35.14 Temperature 1 Al source. The value of the source is assumed to be in the unit of temperature specified by parameter 96.16 Unit selection.	11
	KTY83 analog I/O	KTY83 sensor connected to the analog input selected by parameter 35.14 Temperature 1 A/ source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	12

No.	Name/Value	Description	Def/FbEq16
	$1 \times$ Pt1000 analog I/O	Pt1000 sensor connected to a standard analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	13
	$2 \times$ Pt1000 analog I/O	As selection $1 \times$ Pt1000 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	14
	$3 \times$ Pt1000 analog I/O	As selection $1 \times$ Pt1000 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	15
	Ni1000	Ni 1000 sensor connected to the analog input selected by parameter 35.14 Temperature 1 AI source and an analog output. Sensors with thermal coefficient 6.18 ohm $/ 1^{\circ} \mathrm{C}$ ($6180 \mathrm{ppm} / \mathrm{K}$) are supported. $100^{\circ} \mathrm{C}$ corresponds to 1618 ohm. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 1 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	16
	Reserved		17... 18
	PTC extension module	PTC is connected to the CMOD-02 multifunction extension module, which is installed in drive slot 2 . See chapter Optional I/O extension modules, section CMOD-02 multifunction extension module (external 24 VAC/DC and isolated PTC interface) in the Hardware manual of the drive).	19
	PTC analog I/O	PTC sensor connected to analog input selected by parameter 35.14 Temperature 1 Al source and an analog output. The required settings are the same as with selection KTY84 analog I/O. Note: With this selection, the control program converts the analog signal to PTC resistance value in ohms and shows it in parameter 35.02. The parameter name and unit still refer to temperature.	20

No.	Name/Value	Description	Def/FbEq16
	Therm(0)	PTC sensor or a normally closed thermistor connected relay to digital input DI6. The motor is overheated when the digital input is 0 .	21
	Therm(1)	Normally open thermistor relay connected to digital input DI6. The motor is overheated when the digital input is 1 .	22
35.12	Temperature 1 fault limit	Defines the fault limit for temperature supervision function 1. When measured temperature 1 exceeds the limit, the drive trips on fault 4981 External temperature 1. The unit is selected by parameter 96.16 Unit selection. Notes: - With a PTC sensor, the unit is ohms. - With a PTC sensor connected DI6, the value shown is not a valid measurement. Either 0 ohm (normal temperature) or the value of parameter 35.12 Temperature 1 fault limit (excessive temperature) is shown. - With a PTC sensor, changing the value of this parameter has no effect on fault generation. When PTC is over the triggering threshold of the CMOD-02 (see the Hardware manual of the drive), the drive trips on the fault and when PTC has decreased below recovery threshold of the CMOD-02 (see the Hardware manual of the drive), the fault can be reset manually.	$\begin{aligned} & 130^{\circ} \mathrm{C} \text { or } \\ & 266^{\circ} \mathrm{F} \text { or } \\ & 4500 \mathrm{ohm} \end{aligned}$
	$-60 \ldots . .5000^{\circ} \mathrm{C}$ or $-76 \ldots . .9032^{\circ} \mathrm{F}$ or $0 . .5000 \mathrm{ohm}$	Fault limit for temperature monitoring function 1.	$1=1$ unit
35.13	Temperature 1 warning limit	Defines the warning limit for temperature supervision function 1. When measured temperature 1 exceeds the limit, warning A491 External temperature 1 is generated. The unit is selected by parameter 96.16 Unit selection. Notes: - With a PTC sensor, the unit is ohms. - With a PTC sensor, changing the value of this parameter has no effect on fault generation. When PTC is over the triggering threshold of the CMOD-02 (see the Hardware manual of the drive), the drive trips on the fault and when PTC has decreased below recovery threshold of the CMOD-02 (see the Hardware manual of the drive), the fault can be reset manually.	$\begin{aligned} & 1100^{\circ} \mathrm{C} \text { or } \\ & 230^{\circ} \mathrm{F} \text { or } \\ & 4000 \mathrm{hm} \end{aligned}$
	$-60 \ldots . .5000^{\circ} \mathrm{C}$ or $-76 \ldots . .9032{ }^{\circ} \mathrm{F}$ or 0... 5000 ohm	Warning limit for temperature monitoring function 1.	$1=1$ unit
35.14	Temperature 1 Al source	Specifies the analog input when the setting of 35.11 Temperature 1 source requires measurement through an analog input.	Not selected
	Not selected	None.	0
	Al1 actual value	Analog input Al1 on the control unit.	1
	Al2 actual value	Analog input Al2 on the control unit.	2
	Other	Source selection (see Terms and abbreviations on page 196).	-

No.	Name/Value	Description	Def/FbEq16
35.21	Temperature 2 source	Selects the source from which measured temperature 2 is read. Usually this source is from a sensor connected to the motor controlled by the drive, but it could be used to measure and monitor a temperature from other parts of the process as long as a suitable sensor is used as per the selection list. See parameter 35.11.	Estimated temperature
	Disabled	None. Temperature monitoring function 2 is disabled.	0
	Estimated temperature	Estimated motor temperature (see parameter 35.01 Motor estimated temperature). The temperature is estimated from an internal drive calculation. It is important to set up the ambient temperature of the motor in 35.50 Motor ambient temperature.	1
	KTY84 analog I/O	KTY84 sensor connected to the analog input selected by parameter 35.24 Temperature 2 Al source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	2
	Reserved		3... 4
	$\begin{aligned} & 1 \times \mathrm{Pt} 100 \text { analog } \\ & \text { I/O } \end{aligned}$	Pt100 sensor connected to a standard analog input selected by parameter 35.24 Temperature 2 A/ source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard A/ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	5
	$\begin{aligned} & 2 \times \mathrm{Pt} 100 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$	As selection $1 \times$ Pt100 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	6
	$\begin{aligned} & 3 \times \mathrm{Pt} 100 \text { analog } \\ & 1 / \mathrm{O} \end{aligned}$	As selection $1 \times$ Pt100 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	7

No.	Name/Value	Description	Def/FbEq16
	PTC DI6	PTC sensor is connected to DI6. Note: With a PTC sensor connected DI6, the value shown is not a valid measurement. Either 0 ohm (normal temperature) or the value of parameter 35.22 Temperature 2 fault limit (excessive temperature) is shown.	8
	Reserved		9... 10
	Direct temperature	The temperature is taken from the source selected by parameter 35.24 Temperature 2 AI source. The value of the source is assumed to be in the unit of temperature specified by parameter 96.16 Unit selection.	11
	KTY83 analog I/O	KTY83 sensor connected to the analog input selected by parameter 35.14 Temperature 1 AI source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A I$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	12
	$\begin{aligned} & 1 \times \mathrm{Pt} 1000 \text { analog } \\ & \mathrm{I} / \mathrm{O} \end{aligned}$	Pt1000 sensor connected to a standard analog input selected by parameter 35.14 Temperature 1 AI source and an analog output. The following settings are required: - Set the hardware jumper or switch related to the analog input to \boldsymbol{U} (voltage). Any change must be validated by a control unit reboot. - Set the appropriate analog input unit selection parameter in group 12 Standard $A I$ to V (volt). - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation. The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	13
	```2\timesPt1000 analog I/O```	As selection $1 \times$ Pt1000 analog I/O, but with two sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	14
	$\begin{aligned} & 3 \times \mathrm{Pt} 1000 \text { analog } \\ & \mathrm{I} / \mathrm{O} \end{aligned}$	As selection $1 \times$ Pt1000 analog I/O, but with three sensors connected in series. Using multiple sensors improves measurement accuracy significantly.	15


No.	Name/Value	Description	Def/FbEq16
	Ni1000	Ni1000 sensor connected to the analog input selected by parameter 35.14 Temperature 1 AI source and an analog output.   Sensors with thermal coefficient $6.18 \mathrm{ohm} / 1^{\circ} \mathrm{C}$ ( $6180 \mathrm{ppm} / \mathrm{K}$ ) are supported. $100^{\circ} \mathrm{C}$ corresponds to 1618 ohm.   The following settings are required:   - Set the hardware jumper or switch related to the analog input to $\boldsymbol{U}$ (voltage). Any change must be validated by a control unit reboot.   - Set the appropriate analog input unit selection parameter in group 12 Standard $A /$ to $V$ (volt).   - In parameter group 13 Standard AO, set the source selection parameter of the analog output to Temp sensor 2 excitation.   The analog output feeds a constant current through the sensor. As the resistance of the sensor increases along with its temperature, the voltage over the sensor increases. The voltage is read by the analog input and converted into degrees.	16
	Reserved		17... 18
	PTC extension module	PTC is connected to the CMOD-02 multifunction extension module, which is installed in drive slot 2 . See chapter Optional I/O extension modules, section CMOD-02 multifunction extension module (external $24 \mathrm{VAC/DC}$ and isolated PTC interface) in the Hardware manual of the drive).	19
	PTC analog I/O	PTC sensor connected to analog input selected by parameter 35.24 Temperature 2 AI source and an analog output.   The required settings are the same as with selection KTY84 analog I/O.   Note: With this selection, the control program converts the analog signal to PTC resistance value in ohms and shows it in parameter 35.03. The parameter name and unit still refer to temperature.	20
	Therm(0)	PTC sensor or a normally closed thermistor connected relay to digital input DI6. The motor is overheated when the digital input is 0 m	21
	Therm(1)	Normally open thermistor relay connected to digital input DI6. The motor is overheated when the digital input is 1 .	22
35.22	Temperature 2 fault limit	Defines the fault limit for temperature supervision function 2. When measured temperature 1 exceeds the limit, the drive trips on fault 4982 External temperature 2.   The unit is selected by parameter 96.16 Unit selection.   Notes:   - With a PTC sensor, the unit is ohms.   - With a PTC sensor, changing the value of this parameter has no effect on fault generation. When PTC is over the triggering threshold of the CMOD-02 (see the Hardware manual of the drive), the drive trips on the fault and when PTC has decreased below recovery threshold of the CMOD-02 (see the Hardware manual of the drive), the fault can be reset manually.	$\begin{aligned} & 130^{\circ} \mathrm{C} \text { or } \\ & 266^{\circ} \mathrm{F} \text { or } \\ & 4500 \text { ohm } \end{aligned}$
	$\begin{aligned} & -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 9032^{\circ} \mathrm{F} \text { or } \\ & 0 \ldots . .5000 \text { ohm } \end{aligned}$	Fault limit for temperature monitoring function 2.	1 = 1 unit

$\left.\begin{array}{|ll|l|l|}\hline \text { No. } & \text { Name/Value } & \text { Description } & \text { Def/FbEq16 } \\ \hline 35.23 & \begin{array}{l}\text { Temperature 2 } \\ \text { warning limit }\end{array} & \begin{array}{l}\text { Defines the warning limit for temperature supervision } \\ \text { function 2. When measured temperature 1 exceeds the limit, } \\ \text { warning A492 External temperature 2 is generated. } \\ \text { The unit is selected by parameter 96.16 Unit selection. } \\ \text { Notes: } \\ \text { - With a PTC sensor, the unit is ohms. } \\ \text { - With a PTC sensor, changing the value of this parameter } \\ \text { has no effect on fault generation. When PTC is over the } \\ \text { triggering threshold of the CMODD } \\ \text { manual of (the drive), the drive trips on the fault and war when } \\ \text { PTC has decreased below recovery threshold of the } \\ \text { CMOD-02 (see the Hardware manual of the drive), the } \\ \text { fault can be reset manually. }\end{array} & 4000 \text { ohm }\end{array}\right\}$

No.	Name/Value	Description	Def/FbEq16
35.51	Motor load curve	Defines the motor load curve together with parameters 35.52 Zero speed load and 35.53 Break point. The load curve is used by the motor thermal protection model to estimate the motor temperature.   When the parameter is set to $100 \%$, the maximum load is taken as the value of parameter 99.06 Motor nominal current (higher loads heat up the motor). The load curve level should be adjusted if the ambient temperature differs from the nominal value set in 35.50 Motor ambient temperature.   $I=$ Motor current   $I_{N}=$ Nominal motor current	$110 \%$
	50...150\%	Maximum load for the motor load curve.	1 = 1\%
35.52	Zero speed load	Defines the motor load curve together with parameters 35.51 Motor load curve and 35.53 Break point. Defines the maximum motor load at zero speed of the load curve. A higher value can be used if the motor has an external motor fan to boost the cooling. See the motor manufacturer's recommendations.   See parameter 35.51 Motor load curve.	70\%
	25...150\%	Zero speed load for the motor load curve.	1 = 1\%
35.53	Break point	Defines the motor load curve together with parameters 35.51 Motor load curve and 35.52 Zero speed load. Defines the break point frequency of the load curve ie. the point at which the motor load curve begins to decrease from the value of parameter 35.51 Motor load curve towards the value of parameter 35.52 Zero speed load.   See parameter 35.51 Motor load curve.	45.00 Hz
	$1.00 \ldots 500.00 \mathrm{~Hz}$	Break point for the motor load curve.	See par.   46.02


No.	Name/Value	Description	Def/FbEq16
35.54	Motor nominal temperature rise   Motor nom temperature	Defines the temperature rise of the motor above ambient when the motor is loaded with nominal current. See the motor manufacturer's recommendations.   The unit is selected by parameter 96.16 Unit selection.	$\begin{aligned} & 80^{\circ} \mathrm{C} \text { or } \\ & 1766^{\circ} \mathrm{F} \end{aligned}$
	$\begin{aligned} & 0 . \ldots 300^{\circ} \mathrm{C} \text { or } \\ & 32 \ldots . .572^{\circ} \mathrm{F} \end{aligned}$	Temperature rise.	$1=1^{\circ}$
35.55	Motor thermal time constant	Defines the thermal time constant for use with the motor thermal protection model, defined as the time to reach $63 \%$ of the nominal motor temperature. See the motor manufacturer's recommendations.   For thermal protection according to UL requirements for NEMA class motors, use the rule of thumb: Motor thermal time equals 35 times t6, where 66 (in seconds) is specified by the motor manufacturer as the time that the motor can safely operate at six time its rated current.	256 s
	$100 . .10000 \mathrm{~s}$	Motor thermal time constant.	$1=1 \mathrm{~s}$

$\qquad$

No.	Name/Value	Description	Def/FbEq16
35.56	Motor overload action	Selects the action taken when motor overload is detected. See section Motor overload protection (page 182).	Warning and fault
	No action	No action taken.	0
	Warning only	Drive generates warning A783 Motor overload when the motor is overloaded to the warning level, that is, parameter 35.05 Motor overload level reaches value 88.0\%.	1
	Warning and fault	Drive generates warning A783 Motor overload when the motor is overloaded to the warning level, that is, parameter 35.05 Motor overload level reaches value 88.0\%.   Drive trips on fault 7122 Motor overload when the motor is overloaded to the fault level, that is, parameter 35.05 Motor overload level reaches value $100.0 \%$.	2
35.57	Motor overload class	Defines the motor overload class to be used. The class of protection is specified by the user as the time for tripping at 7.2 times (IEC 60947-4-1) or 6 times (NEMA ICS) the tripping level current.   See section Motor overload protection (page 182).	Class 20
	Class 5	Motor overload class 5.	0
	Class 10	Motor overload class 10.	1
	Class 20	Motor overload class 20.	2
	Class 30	Motor overload class 30.	3
	Class 40	Motor overload class 40.	4
36 Load analyzer		Peak value and amplitude logger settings. See also section Load analyzer (page 187).	
36.01	PVL signal source	Selects the signal to be monitored by the peak value logger. The signal is filtered using the filtering time specified by parameter 36.02 PVL filter time.   The peak value is stored, along with other pre-selected signals at the time, into parameters 36.10...36.15.   The peak value logger can be reset using parameter 36.09 Reset loggers. The logger is also reset whenever the signal source is changed. The date and time of the last reset are stored into parameters 36.16 and 36.17 respectively.	Output power
	Not selected	None (peak value logger disabled).	0
	Motor speed used	01.01 Motor speed used (page 199).	1
	Reserved		2
	Output frequency	01.06 Output frequency (page 199).	3
	Motor current	01.07 Motor current (page 199).	4
	Reserved		5
	Motor torque	01.10 Motor torque (page 199).	6
	DC voltage	01.11 DC voltage (page 199).	7
	Output power	01.14 Output power (page 200).	8
	Reserved		9
	Speed ref ramp in	23.01 Speed ref ramp input (page 276).	10
	Speed ref ramp out	23.02 Speed ref ramp output (page 276).	11
	Speed ref used	24.01 Used speed reference (page 280).	12
	Torque ref used	26.02 Torque reference used (page 286).	13


No.	Name/Value	Description	Def/FbEq16
	Freq ref used	28.02 Frequency ref ramp output (page 291).	14
	Reserved		15
	Process PID out	40.01 Process PID output actual (page 353).	16
	Other	Source selection (see Terms and abbreviations on page 196).	-
36.02	PVL filter time	Peak value logger filtering time. See parameter 36.01 PVL signal source.	2.00 s
	0.00...120.00 s	Peak value logger filtering time.	$100=1 \mathrm{~s}$
36.06	AL2 signal source	Selects the signal to be monitored by amplitude logger 2. The signal is sampled at 200 ms intervals.   The results are displayed by parameters $36.40 \ldots 36.49$. Each parameter represents an amplitude range, and shows what portion of the samples fall within that range.   The signal value corresponding to $100 \%$ is defined by parameter 36.07 AL2 signal scaling.   Amplitude logger 2 can be reset using parameter 36.09 Reset loggers. The logger is also reset whenever the signal source or scaling is changed. The date and time of the last reset are stored into parameters 36.50 and 36.51 respectively.   For the selections, see parameter 36.01 PVL signal source.	Motor torque
36.07	AL2 signal scaling	Defines the signal value that corresponds to 100\% amplitude.	100.00
	0.00...32767.00	Signal value corresponding to 100\%.	1 = 1
36.09	Reset loggers	Resets the peak value logger and/or amplitude logger 2. (Amplitude logger 1 cannot be reset.)	Done
	Done	Reset completed or not requested (normal operation).	0
	All	Reset both the peak value logger and amplitude logger 2.	1
	PVL	Reset the peak value logger.	2
	AL2	Reset amplitude logger 2.	3
36.10	PVL peak value	Peak value recorded by the peak value logger.	0.00
	$\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \end{aligned}$	Peak value.	$1=1$
36.11	PVL peak date	The date on which the peak value was recorded.	01.01.1980
	-	Peak occurrence date.	-
36.12	PVL peak time	The time at which the peak value was recorded.	00:00:00
	-	Peak occurrence time.	-
36.13	PVL current at peak	Motor current at the moment the peak value was recorded.	0.00 A
	$\begin{aligned} & -32768.00 \ldots \\ & 32767.00 \mathrm{~A} \end{aligned}$	Motor current at peak.	$1=1 \mathrm{~A}$
36.14	PVL DC voltage at peak	Voltage in the intermediate DC circuit of the drive at the moment the peak value was recorded.	0.00 V
	0.00...2000.00 V	DC voltage at peak.	$10=1 \mathrm{~V}$
36.15	PVL speed at peak	Motor speed at the moment the peak value was recorded.	0.00 rpm
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{rpm} \end{aligned}$	Motor speed at peak.	See par. $46.01$
36.16	PVL reset date	The date on which the peak value logger was last reset.	01.01.1980
	-	Last reset date of the peak value logger.	-


No.	Name/Value	Description	Def/FbEq16
36.17	PVL reset time	The time at which the peak value logger was last reset.	00:00:00
	-	Last reset time of the peak value logger.	-
36.20	AL1 0 to 10\%	Percentage of samples recorded by amplitude logger 1 that fall between 0 and $10 \%$. $100 \%$ corresponds to the $I_{\max }$ value given in the ratings table in chapter Technical data in the Hardware manual of the drive.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 0 and 10\%.	1 = 1\%
36.21	AL1 10 to 20\%	Percentage of samples recorded by amplitude logger 1 that fall between 10 and 20\%.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 10 and 20\%.	1 = 1\%
36.22	AL1 20 to 30\%	Percentage of samples recorded by amplitude logger 1 that fall between 20 and $30 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 20 and 30\%.	1 = 1\%
36.23	AL1 30 to 40\%	Percentage of samples recorded by amplitude logger 1 that fall between 30 and $40 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 30 and 40\%.	1 = 1\%
36.24	AL1 40 to 50\%	Percentage of samples recorded by amplitude logger 1 that fall between 40 and $50 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 40 and 50\%.	1 = 1\%
36.25	AL1 50 to 60\%	Percentage of samples recorded by amplitude logger 1 that fall between 50 and $60 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 50 and 60\%.	1 = 1\%
36.26	AL1 60 to 70\%	Percentage of samples recorded by amplitude logger 1 that fall between 60 and $70 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 60 and 70\%.	1 = 1\%
36.27	AL1 70 to 80\%	Percentage of samples recorded by amplitude logger 1 that fall between 70 and $80 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 70 and 80\%.	1 = 1\%
36.28	AL1 80 to 90\%	Percentage of samples recorded by amplitude logger 1 that fall between 80 and $90 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples between 80 and 90\%.	1 = 1\%
36.29	AL1 over 90\%	Percentage of samples recorded by amplitude logger 1 that exceed $90 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 1 samples over 90\%.	1 = 1\%
36.40	AL2 0 to 10\%	Percentage of samples recorded by amplitude logger 2 that fall between 0 and 10\%.	0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 0 and 10\%.	1 = 1\%
36.41	AL2 10 to 20\%	Percentage of samples recorded by amplitude logger 2 that fall between 10 and $20 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 10 and 20\%.	1 = 1\%
36.42	AL2 20 to 30\%	Percentage of samples recorded by amplitude logger 2 that fall between 20 and $30 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 20 and 30\%.	1 = 1\%
36.43	AL2 30 to 40\%	Percentage of samples recorded by amplitude logger 2 that fall between 30 and $40 \%$.	0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 30 and 40\%.	1 = 1\%


No.	Name/Value	Description		Def/FbEq16
36.44	AL2 40 to 50\%	Percentage of samples recorded by amplitude logger 2 that fall between 40 and $50 \%$.		0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 40 and 50\%.		1 = 1\%
36.45	AL2 50 to 60\%	Percentage of samples recorded by amplitude logger 2 that fall between 50 and $60 \%$.		0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 50 and 60\%.		1 = 1\%
36.46	AL2 60 to 70\%	Percentage of samples recorded by amplitude logger 2 that fall between 60 and 70\%.		0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 60 and 70\%.		1 = 1\%
36.47	AL2 70 to 80\%	Percentage of samples recorded by amplitude logger 2 that fall between 70 and $80 \%$.		0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 70 and 80\%.		1 = 1\%
36.48	AL2 80 to 90\%	Percentage of samples recorded by amplitude logger 2 that fall between 80 and $90 \%$.		0.00\%
	0.00...100.00\%	Amplitude logger 2 samples between 80 and 90\%.		1 = 1\%
36.49	AL2 over $90 \%$	Percentage of samples recorded by amplitude logger 2 that exceed $90 \%$.		0.00\%
	0.00...100.00\%	Amplitude logger 2 samples over 90\%.		1 = 1\%
36.50	AL2 reset date	The date on which amplitude logger 2 was last reset.		01.01.1980
	-	Last reset date of amplitude logger 2.		-
36.51	AL2 reset time	The time at which amplitude logger 2 was last reset.		00:00:00
	-	Last reset time of amplitude logger 2.		-
37 User load curve		Settings for user load curve.   See also section User load curve (page 129).		
37.01	ULC output status word	Displays the status of the monitored signal. The status is shown only while the drive is running. (The status word is independent of the actions and delays selected by parameters $37.03,37.04,37.41$ and 37.42 .) This parameter is read-only.		0000h
	Bit Name   0		Description	
	Under load limit		1 = Signal lower than the underload curve.	
	Within load range		1 = Signal between the underload and overload curve.	
	Overload limit		1 = Signal higher than the overload curve.	
	Outside load limit		1 = Signal lower than the underload curve or higher than the overload curve.	
	Reserved			
	0000h...FFFFh	Status of the monitored signal.		1 = 1
37.02	ULC supervision signal	Selects the signal to be monitored. The function compares the absolute value of the signal against the load curve.		Motor torque \%
	Not selected	No signal selected (monitoring disabled).		0
	Motor speed \%	01.03 Motor speed \% (page 199).		1
	Motor current \%	01.08 Motor current \% of motor nom (page 199).		2
	Motor torque \%	01.10 Motor torque (page 199).		3


No.	Name/Value	Description	Def/FbEq16
	Output power \% of motor nominal	01.15 Output power \% of motor nom (page 200).	4
	Output power \% of drive nominal	Output power \% of drive nominal.	5
	Other	Source selection (see Terms and abbreviations on page 196).	-
37.03	ULC overload actions	Selects how the drive reacts if the absolute value of the monitored signal stays continuously above the overload curve for longer than the value of 37.41 ULC overload timer.	Disabled
	Disabled	No action taken.	0
	Warning	The drive generates a warning (A8BE ULC overload warning).	1
	Fault	The drive trips on 8002 ULC overload fault.	2
	Warning/Fault	The drive generates a warning (A8BE ULC overload warning) if the signal stays continuously above the overload curve for half of the time defined by parameter 37.41 ULC overload timer.   The drive trips on 8002 ULC overload fault if the signal stays continuously above the overload curve for a time defined by parameter 37.41 ULC overload timer.	3
37.04	ULC underload actions	Selects how the drive reacts if the absolute value of the monitored signal stays continuously below the overload curve for longer than the value of 37.42 ULC underload timer.	Disabled
	Disabled	No action taken.	0
	Warning	The drive generates a warning (A8BF ULC underload warning).	1
	Fault	The drive trips on 8001 ULC underload fault.	2
	Warning/Fault	The drive generates a warning (A8BF ULC underload warning) if the signal stays continuously below the underload curve for half of the time defined by parameter 37.41 ULC overload timer.   The drive trips on 8001 ULC underload fault if the signal stays continuously below the underload curve for a time defined by parameter 37.42 ULC underload timer.	3
37.11	ULC speed table point 1	Defines the first of the five speed points on the X -axis of the user load curve.   Speed points are used if parameter 99.04 Motor control mode is set to Vector or if 99.04 Motor control mode is set to Scalar and the reference unit is rpm.   The five points must be in order from lowest to highest. The points are defined as positive values, but the range is symmetrically effective also in the negative direction. The monitoring is not active outside these two areas.	150.0 rpm
	$\begin{aligned} & -30000.0 \ldots 30000.0 \\ & \text { rpm } \end{aligned}$	Speed.	1 = 1 rpm
37.12	ULC speed table point 2	Defines the second speed point.   See parameter 37.11 ULC speed table point 1.	750.0 rpm
	$\begin{aligned} & \hline-30000.0 \ldots 30000.0 \\ & \text { rpm } \end{aligned}$	Speed.	1 = 1 rpm


No.	Name/Value	Description	Def/FbEq16
37.13	ULC speed table point 3	Defines the third speed point. See parameter 37.11 ULC speed table point 1 .	1290.0 rpm
	$\begin{aligned} & -30000.0 \ldots 30000.0 \\ & \text { rpm } \end{aligned}$	Speed.	1 = 1 rpm
37.14	ULC speed table point 4	Defines the fourth speed point. See parameter 37.11 ULC speed table point 1.	1500.0 rpm
	$\begin{aligned} & -30000.0 \ldots 30000.0 \\ & \text { rpm } \end{aligned}$	Speed.	1 = 1 rpm
37.15	ULC speed table point 5	Defines the fifth speed point.   See parameter 37.11 ULC speed table point 1.	1800.0 rpm
	$\begin{aligned} & -30000.0 \ldots 30000.0 \\ & \mathrm{rpm} \end{aligned}$	Speed.	1 = 1 rpm
37.16	ULC frequency table point 1	Defines the first of the five frequency points on the X -axis of the user load curve.   Frequency points are used if parameter 99.04 Motor control mode is set to Scalar and the reference unit is Hz .   The five points must be in order from lowest to highest. The points are defined as positive values, but the range is symmetrically effective also in the negative direction. The monitoring is not active outside these two areas.	5.0 Hz
	-500.0...500.0 Hz	Frequency.	1 = 1 Hz
37.17	ULC frequency table point 2	Defines the second frequency point.   See parameter 37.16 ULC frequency table point 1.	25.0 Hz
	-500.0...500.0 Hz	Frequency.	$1=1 \mathrm{~Hz}$
37.18	ULC frequency table point 3	Defines the third frequency point. See parameter 37.16 ULC frequency table point 1.	43.0 Hz
	-500.0...500.0 Hz	Frequency.	$1=1 \mathrm{~Hz}$
37.19	ULC frequency table point 4	Defines the fourth frequency point. See parameter 37.16 ULC frequency table point 1.	50.0 Hz
	-500.0...500.0 Hz	Frequency.	$1=1 \mathrm{~Hz}$
37.20	ULC frequency table point 5	Defines the fifth frequency point. See parameter 37.16 ULC frequency table point 1.	60.0 Hz
	-500.0...500.0 Hz	Frequency.	1 = 1 Hz
37.21	ULC underload point 1	Defines the first of the five points on the Y -axis that together with the corresponding point on the X-axis (37.11 ULC speed table point 1 ...37.15 ULC speed table point 5 or 37.15 ULC speed table point 5...37.20 ULC frequency table point 5) define the underload (lower) curve.   Each point of the underload curve must have a lower value than the corresponding overload point.	10.0\%
	-1600.0..1600.0\%	Underload point.	1 = 1\%
37.22	ULC underload point 2	Defines the second underload point. See parameter 37.21 ULC underload point 1.	15.0\%
	-1600.0..1600.0\%	Underload point.	1 = 1\%
37.23	ULC underload point 3	Defines the third underload point. See parameter 37.21 ULC underload point 1	25.0\%
	-1600.0..1600.0\%	Underload point.	1 = 1\%


No.	Name/Value	Description	Def/FbEq16
37.24	ULC underload point 4	Defines the fourth underload point. See parameter 37.21 ULC underload point 1	30.0\%
	-1600.0...1600.0\%	Underload point.	1 = 1\%
37.25	ULC underload point 5	Defines the fifth underload point. See parameter 37.21 ULC underload point 1	30.0\%
	-1600.0...1600.0\%	Underload point.	1 = 1\%
37.31	ULC overload point 1	Defines the first of the five points on the Y -axis that together with the corresponding point on the X -axis (37.11 ULC speed table point 1...37.15 ULC speed table point 5 or 37.15 ULC speed table point 5...37.20 ULC frequency table point 5) define the overload (higher) curve.   Each point of the overload curve must have a higher value than the corresponding underload point.	300.0\%
	-1600.0...1600.0\%	Overload point.	1 = 1\%
37.32	ULC overload point 2	Defines the second overload point.   See parameter 37.31 ULC overload point 1.	300.0\%
	-1600.0...1600.0\%	Overload point.	1 = 1\%
37.33	ULC overload point 3	Defines the third overload point.   See parameter 37.31 ULC overload point 1.	300.0\%
	-1600.0...1600.0\%	Overload point.	1 = 1\%
37.34	ULC overload point 4	Defines the fourth overload point.   See parameter 37.31 ULC overload point 1.	300.0\%
	-1600.0...1600.0\%	Overload point.	1 = 1\%
37.35	ULC overload point 5	Defines the fifth overload point. See parameter 37.31 ULC overload point 1.	300.0\%
	-1600.0...1600.0\%	Overload point.	1 = 1\%
37.41	ULC overload timer	Defines the time for which the monitored signal must continuously stay above the overload curve before the drive takes the action selected by 37.03 ULC overload actions.	20.0 s
	0.0... 10000.0 s	Overload timer.	$1=1 \mathrm{~s}$
37.42	ULC underload timer	Defines the time for which the monitored signal must continuously stay below the underload curve before the drive takes the action selected by 37.04 ULC underload actions.	20.0 s
	0.0...10000.0 s	Underload timer.	$1=1 \mathrm{~s}$


No.	Name/Value	Description	Def/FbEq16
40 Process PID set 1		Parameter values for process PID control.   The drive output can be controlled by the process PID. When the process PID control is enabled, the drive controls the process feedback to the reference value.   Two different parameter sets can be defined for the process PID. One parameter set is in use at a time. The first set is made up of parameters $40.07 \ldots 40.90$ the second set is defined by the parameters in group 41 Process PID set 2. The binary source that defines which set is used is selected by parameter 40.57 PID set1/set2 selection.   See also the control chain diagrams on pages 563 and 564 . To set the PID customer unit, select Menu - Primary settings - PID - Unit on the control panel.	
$40.01 \begin{aligned} & \text { Process PID output } \\ & \text { actual }\end{aligned}$		Displays the output of the process PID controller. See the control chain diagram on page 564 .   This parameter is read-only.	-
$\begin{gathered} -200000.00 \ldots \\ 200000.00 \end{gathered}$		Process PID controller output.	1 = 1
40.02	Process PID feedback actual	Displays the value of process feedback after source selection, mathematical function (parameter 40.10 Set 1 feedback function), and filtering. See the control chain diagram on page 563.   This parameter is read-only.	-
	-200000.00.. 200000.00 PID customer units	Process feedback.	$1 \text { = } 1 \text { PID }$   customer unit
40.03	Process PID setpoint actual	Displays the value of process PID setpoint after source selection, mathematical function (40.18 Set 1 setpoint function), limitation and ramping. See the control chain diagram on page 563.   This parameter is read-only.	-
	-200000.00. 200000.00 PID customer units	Setpoint for process PID controller.	$1 \text { = } 1 \text { PID }$   customer unit
40.04	Process PID deviation actual	Displays the process PID deviation. By default, this value equals setpoint - feedback, but deviation can be inverted by parameter 40.31 Set 1 deviation inversion. See the control chain diagram on page 564. This parameter is read-only.	-
	-200000.00.. 200000.00 PID customer units	PID deviation.	$1 \text { = } 1 \text { PID }$   customer unit
40.05	Process PID trim output act	Displays the process PID trimmed reference output. See control chain diagram on page 564 .   This parameter is read-only.	-
	-32768.0..32767.0	Process PID trimmed reference.	1 = 1


No.	Name/Value	Description		Def/FbEq16
40.06	Process PID status word	Displays status information on process PID control. This parameter is read-only.		-
	Name		Value	
		PID active	1 = Process PID control active.	
	Setpoint frozen		1 = Process PID setpoint frozen.	
	2 Output froz	Output frozen	1 = Process PID controller output frozen.	
	PID sleep mode		1 = Sleep mode active.	
	Sleep boost		1 = Sleep boost active.	
	Trim mode		1 = Trim mode active	
	Tracking mode		1 = Tracking function active.	
	Output limit high		1 = PID output is being limited by par. 40.37.	
	Output limit low		1 = PID output is being limited by par. 40.36 .	
	Deadband active		1 = Deadband active (see par. 40.39)	
	PID set		$0=$ Parameter set 1 in use. 1 = Parameter set 2 in use.	
	Reserved			
	12 Internal set   active   $13 \ldots . .5$ Res.	Internal setpoint active	1 = Internal setpoint active (see par. 40.16...40.23)	
	Reserved			
	0000h...FFFFh	Process PID control status word.		1 = 1
40.07	Process PID operation mode	Activates/deactivates process PID control.   Note: Process PID control is only available in external control; see section Local control vs. external control (page 107).		Off
	Off	Process PID control inactive.		0
	On	Process PID control active.		1
	On when drive running	Process PID control is active when the drive is running.		2
40.08	Set 1 feedback 1 source	Selects the primary source of process feedback. See the control chain diagram on page 563.		Al2 percent
	Not selected	None.		0
	Al1 scaled	12.12 Al1 scaled value (see page 227).		1
	Al2 scaled	12.22 Al2 scaled value (see page 229).		2
	Freq in scaled	11.39 Freq in 1 scaled value (see page 225).		3
	Reserved			4...7
	Al1 percent	12.101 Al1 percent value (see page 230).		8
	Al2 percent	12.102 Al2 percent value (see page 230).		9
	Feedback data storage	40.91 Feedback data storage (see page 368).		10
	Other	Source selection (see Terms and abbreviations on page 196).		-
40.09	Set 1 feedback 2 source	Selects the second source of process feedback. The second source is used only if the setpoint function requires two inputs.   For the selections, see parameter 40.08 Set 1 feedback 1 source.		Not selected


No.	Name/Value	Description		Def/FbEq16
40.10	Set 1 feedback function	Defines how process feedback is calculated from the two feedback sources selected by parameters 40.08 Set 1 feedback 1 source and 40.09 Set 1 feedback 2 source. The result of the function (for any selection) is multiplied by parameter 40.90 Set 1 feedback multiplier.		In1
	In1	Source 1.		0
	$\ln 1+\ln 2$	Sum of sources 1 and 2.		1
	$\ln 1-\ln 2$	Source 2 subtracted from source 1.		2
	$\ln 1^{*} \ln 2$	Source 1 multiplied by source 2.		3
	$\ln 1 / \mathrm{ln} 2$	Source 1 divided by source 2.		4
	MIN( $\ln 1, \ln 2)$	Smaller of the two sources.		5
	MAX(ln1, In2)	Greater of the two sources.		6
	AVE(ln1, $\ln 2$ )	Average of the two sources.		7
	sqrt(ln1)	Square root of source 1.		8
	sqrt(ln1-In2)	Square root of (source 1 - source 2).		9
	sqrt(ln1+ln2)	Square root of (source $1+$ source 2).		10
	sqrt(ln1)+sqrt(ln2)	Square root of source $1+$ square root of source 2 .		11
40.11	Set 1 feedback filter time	Defines the filter time constant for process feedback.		0.000 s
	0.000...30.000 s	Feedback filter time.		$1=1 \mathrm{~s}$
40.14	Set 1 setpoint scaling	Defines, together with parameter 40.15 Set 1 output scaling, a general scaling factor for the process PID control chain. If the parameter is set to zero, automatic setpoint scaling is activated, where suitable setpoint scale is calculated according to selected setpoint source. Actual setpoint scale is shown in parameter 40.61 Setpoint scaling actual.   The scaling can be utilized when, for example, the process setpoint is input in Hz , and the output of the PID controller is used as an rpm value in speed control. In this case, this parameter might be set to 50, and parameter 40.15 to the nominal motor speed at 50 Hz .   In effect, the output of the PID controller = [40.15] when deviation (setpoint - feedback) $=[40.14]$ and [40.32] $=1$.   Note: The scaling is based on the ratio between 40.14 and 40.15. For example, the values 50 and 1500 would produce the same scaling as 1 and 30 .		0.00
	$\begin{aligned} & -200000.00 \ldots \\ & 200000.00 \end{aligned}$	Scaling.		$1=1$
40.15	Set 1 output scaling	See parameter 40.14 Set If the parameter is set to according to column Scali	oint scaling.   caling is automatic, and	0.00
	$\begin{aligned} & \hline-200000.00 \ldots \\ & 200000.00 \end{aligned}$	Process PID controller output base.		$1=1$

$\qquad$

No.	Name/Value	Description	Def/FbEq16
40.16	Set 1 setpoint 1 source	Selects the primary source of process PID setpoint. See the control chain diagram on page 563.	Al1 percent
	Not selected	None.	0
	Reserved		1
	Internal setpoint	Internal setpoint. See parameter 40.19 Set 1 internal setpoint sel1.	2
	Al1 scaled	12.12 Al1 scaled value (see page 227).	3
	Al2 scaled	12.22 Al2 scaled value (see page 229).	4
	Reserved		5... 7
	Motor potentiometer	22.80 Motor potentiometer ref act (output of the motor potentiometer).	8
	Reserved		9
	Freq in scaled	11.39 Freq in 1 scaled value (see page 225).	10
	Al1 percent	12.101 Al1 percent value (see page 230)	11
	Al2 percent	12.102 Al2 percent value (see page 230)	12
	Control panel (ref saved)	Control panel reference (03.01 Panel reference, see page 202) saved by the control system for the location where the control returns is used as the reference.   (Selection not available for parameter 71.16 Setpoint 1 source.)   - EXT1 reference   $\times$ EXT2 reference   - Active reference   . . Inactive reference   EXT1 -> EXT2	13
	Control panel (ref copied)	Control panel reference (03.01 Panel reference, see page 202) for the previous control location is used as the reference when the control location changes if the references for the two locations are of the same type (for example, frequency/speed/torque/PID); otherwise, the actual signal is used as the new reference.   - EXT1 reference   x EXT2 reference   - Active reference   - . Inactive reference   EXT1 -> EXT2	14
	FB A ref1	03.05 FB A reference 1 (see page 202).	15
	FB A ref2	03.06 FB A reference 2 (see page 202).	16
	Reserved		17... 18
	EFB ref1	03.09 EFB reference 1 (see page 202).	19
	EFB ref2	03.10 EFB reference 2 (see page 203).	20
	Reserved		21... 23
	Setpoint data storage	40.92 Setpoint data storage (see page 368). (Selection not available for parameter 71.16 Setpoint 1 source.)	24

$\qquad$

No.	Name/Value	Description			Def/FbEq16
	Other	Source selection (see Terms and abbreviations on page 196).			-
40.17	Set 1 setpoint 2 source	Selects the second source of process setpoint. The second source is used only if the setpoint function requires two inputs.   For the selections, see parameter 40.16 Set 1 setpoint 1 source.			Not selected
40.18	Set 1 setpoint function	Selects a function between the setpoint sources selected by parameters 40.16 Set 1 setpoint 1 source and 40.17 Set 1 setpoint 2 source.   The result of the function (for any selection) is multiplied by parameter 40.89 Set 1 setpoint multiplier.			In1
	$\ln 1$	Source 1.			0
	$\ln 1+\ln 2$	Sum of sources 1 and 2.			1
	$\ln 1-\ln 2$	Source 2 subtracted from source 1.			2
	$\ln 1 * \ln 2$	Source 1 multiplied by source 2.			3
	$\ln 1 / \mathrm{ln} 2$	Source 1 divided by source 2.			4
	MIN( $\ln 1, \ln 2)$	Smaller of the two sources.			5
	MAX( $\ln 1, \ln 2)$	Greater of the two sources.			6
	AVE( $\ln 1, \ln 2)$	Average of the two sources.			7
	sqrt(ln1)	Square root of source 1.			8
	sqrt(ln1-ln2)	Square root of (source 1 - source 2).			9
	sqrt(ln1+ln2)	Square root of (source $1+$ source 2).			10
	sqrt(ln1)+sqrt(ln2)	Square root of source $1+$ square root of source 2 .			11
40.19	Set 1 internal setpoint sel1	Selects together with 40.20 Set 1 internal setpoint sel2 the internal setpoint out of the presets defined by parameters 40.21... 40.24 .   Note: Parameters 40.16 Set 1 setpoint 1 source and 40.17 Set 1 setpoint 2 source must be set to Internal setpoint.			Not selected
		$\begin{array}{\|l\|} \hline \text { Source defined } \\ \text { by par. } 40.19 \end{array}$	Source defined by par. 40.20	Setpoint preset active	
		0	0	0 (par. 40.24)	
		1	0	1 (par. 40.21)	
		0	1	2 (par. 40.22)	
		1	1	3 (par. 40.23)	
	Not selected	0.			0
	Selected	1.			1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).			2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).			3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).			4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).			5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).			6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).			7
	Reserved				8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).			18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).			19


No.	Name/Value	Description	Def/FbEq16
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	21
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	22
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	23
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
40.20	Set 1 internal setpoint sel2	Selects together with 40.19 Set 1 internal setpoint sel1 the internal setpoint used out of the three internal setpoints defined by parameters $40.21 \ldots 40.23$. See table at 40.19 Set 1 internal setpoint sel1.	Not selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	21
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	22
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	23
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
40.21	Set 1 internal setpoint 1	Internal process setpoint 1. See parameter 40.19 Set 1 internal setpoint sel1.	0.00 PID customer units
	$\begin{aligned} & -200000.00 \ldots \\ & \text { 200000.00 PID } \\ & \text { customer units } \end{aligned}$	Internal process setpoint 1.	$1 \text { = } 1 \text { PID }$   customer unit
40.22	Set 1 internal setpoint 2	Internal process setpoint 2. See parameter 40.19 Set 1 internal setpoint sel1.	0.00 PID customer units
	$\begin{aligned} & \hline-200000.00 \ldots \\ & \text { 200000.00PID } \\ & \text { customer units } \end{aligned}$	Internal process setpoint 2.	$1 \text { = } 1 \text { PID }$   customer unit
40.23	Set 1 internal setpoint 3	Internal process setpoint 3. See parameter 40.19 Set 1 internal setpoint sel1.	0.00 PID customer units
	$\begin{aligned} & -200000.00 \ldots \\ & 200000.00 \text { PID } \\ & \text { customer units } \end{aligned}$	Internal process setpoint 3.	$1 \text { = } 1 \text { PID }$   customer unit


No.	Name/Value	Description	Def/FbEq16
40.24	Set 1 internal setpoint 0	Internal process setpoint 0. See parameter 40.19 Set 1 internal setpoint sel1.	0.00 PID customer units
	$\begin{aligned} & -200000.00 \ldots \\ & \text { 200000.00 PID } \\ & \text { customer units } \end{aligned}$	Internal process setpoint 0.	$1 \text { = } 1 \text { PID }$ customer unit
40.26	Set 1 setpoint min	Defines a minimum limit for the process PID controller setpoint.	0.00 PID customer units
	$\begin{aligned} & \hline-200000.00 \ldots \\ & \text { 200000.00 PID } \\ & \text { customer units } \end{aligned}$	Minimum limit for process PID controller setpoint.	$1 \text { = } 1 \text { PID }$   customer unit
40.27	Set 1 setpoint max	Defines a maximum limit for the process PID controller setpoint.	200000.00 PID customer units
	$\begin{aligned} & -200000.00 \ldots \\ & \text { 200000.00 PID } \\ & \text { customer units } \end{aligned}$	Maximum limit for process PID controller setpoint.	$1 \text { = } 1 \text { PID }$ customer unit
40.28	Set 1 setpoint increase time	Defines the minimum time it takes for the setpoint to increase from 0\% to 100\%.	0.0 s
	0.0...1800.0 s	Setpoint increase time.	1 = 1
40.29	Set 1 setpoint decrease time	Defines the minimum time it takes for the setpoint to decrease from 100\% to 0\%.	0.0 s
	$0.0 \ldots 1800.0 \mathrm{~s}$	Setpoint decrease time.	1 = 1
40.30	Set 1 setpoint freeze enable	Freezes, or defines a source that can be used to freeze, the setpoint of the process PID controller. This feature is useful when the reference is based on a process feedback connected to an analog input, and the sensor must be serviced without stopping the process.   1 = Process PID controller setpoint frozen   See also parameter 40.38 Set 1 output freeze enable.	Not selected
	Not selected	Process PID controller setpoint not frozen.	0
	Selected	Process PID controller setpoint frozen.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	21
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	22
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	23
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-


No.	Name/Value	Description	Def/FbEq16
40.31	Set 1 deviation inversion	Inverts the input of the process PID controller.   $0=$ Deviation not inverted (Deviation $=$ Setpoint - Feedback)   1 = Deviation inverted (Deviation = Feedback - Setpoint)   See also section Sleep and boost functions for process PID control (page 132).	Not inverted (Ref-Fbk)
	Not inverted (Ref - Fbk)	0.	0
	Inverted (Fbk - Ref)	1.	1
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	
40.32	Set 1 gain	Defines the gain for the process PID controller. See parameter 40.33 Set 1 integration time.	1.00
	0.01...100.00	Gain for PID controller.	$100=1$
40.33	Set 1 integration time	Defines the integration time for the process PID controller. This time needs to be set to the same order of magnitude as the reaction time of the process being controlled, otherwise instability will result.   Note: Setting this value to 0 disables the " 1 " part, turning the PID controller into a PD controller.	60.0 s
	0.0...9999.0 s	Integration time.	$1=1 \mathrm{~s}$
40.34	Set 1 derivation time	Defines the derivation time of the process PID controller. The derivative component at the controller output is calculated on basis of two consecutive error values ( $\mathrm{E}_{\mathrm{K}-1}$ and $\mathrm{E}_{\mathrm{K}}$ ) according to the following formula:   PID DERIV TIME $\times\left(\mathrm{E}_{\mathrm{K}}-\mathrm{E}_{\mathrm{K}-1}\right) / T_{\mathrm{S}}$, in which $T_{\mathrm{S}}=2 \mathrm{~ms}$ sample time   $\mathrm{E}=\mathrm{Error}=$ Process reference - process feedback.	0.000 s
	0.000...10.000 s	Derivation time.	$1000=1 \mathrm{~s}$


No.	Name/Value	Description	Def/FbEq16
40.35	Set 1 derivation filter time	Defines the time constant of the 1-pole filter used to smooth the derivative component of the process PID controller.	0.0 s
	0.0...10.0 s	Filter time constant.	$10=1 \mathrm{~s}$
40.36	Set 1 output min	Defines the minimum limit for the process PID controller output. Using the minimum and maximum limits, it is possible to restrict the operation range.	0.00
	$\begin{aligned} & \hline-200000.00 \ldots \\ & 200000.00 \end{aligned}$	Minimum limit for process PID controller output.	$1=1$
40.37	Set 1 output max	Defines the maximum limit for the process PID controller output. See parameter 40.36 Set 1 output min.	100.00
	$\begin{aligned} & -200000.00 \ldots \\ & 200000.00 \end{aligned}$	Maximum limit for process PID controller output.	$1=1$
40.38	Set 1 output freeze enable	Freezes (or defines a source that can be used to freeze) the output of the process PID controller, keeping the output at the value it was before freeze was enabled. This feature can be used when, for example, a sensor providing process feedback must to be serviced without stopping the process. 1 = Process PID controller output frozen See also parameter 40.30 Set 1 setpoint freeze enable.	Not selected
	Not selected	Process PID controller output not frozen.	0
	Selected	Process PID controller output frozen.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20

$\qquad$


No.	Name/Value	Description	Def/FbEq16
40.46	Set 1 sleep boost step	When the drive is entering sleep mode, the process setpoint is increased by this value for the time defined by parameter 40.45 Set 1 sleep boost time.   If active, sleep boost is aborted when the drive wakes up.	0.0 PID customer units
	0.0...200000.0 PID customer units	Sleep boost step.	$1 \text { = } 1 \text { PID }$ customer unit
40.47	Set 1 wake-up deviation	Defines the wake-up level as deviation between process setpoint and feedback.   When the deviation exceeds the value of this parameter, and remains there for the duration of the wake-up delay (40.48 Set 1 wake-up delay), the drive wakes up.   See also parameter 40.31 Set 1 deviation inversion.	0.00 PID customer units
	$\begin{aligned} & -200000.00 \ldots \\ & \text { 200000.00 PID } \\ & \text { customer units } \end{aligned}$	Wake-up level (as deviation between process setpoint and feedback).	$1 \text { = } 1 \text { PID }$   customer unit
40.48	Set 1 wake-up delay	Defines a wake-up delay for the sleep function to prevent nuisance wake-ups. See parameter 40.47 Set 1 wake-up deviation.   The delay timer starts when the deviation exceeds the wakeup level (40.47 Set 1 wake-up deviation), and resets if the deviation falls below the wake-up level.	0.50 s
	0.00...60.00 s	Wake-up delay.	$1=1 \mathrm{~s}$
40.49	Set 1 tracking mode	Activates (or selects a source that activates) tracking mode. In tracking mode, the value selected by parameter 40.50 Set 1 tracking ref selection is substituted for the PID controller output. See also section Tracking (page 134). 1 = Tracking mode enabled	Not selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	21
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	22
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	23
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
40.50	Set 1 tracking ref selection	Selects the value source for tracking mode. See parameter 40.49 Set 1 tracking mode.	Not selected
	Not selected	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2


No.	Name/Value	Description	Def/FbEq16
	FB A ref1	03.05 FB A reference 1 (see page 202).	3
	FB A ref2	03.06 FB A reference 2 (see page 202).	4
	Other	Source selection (see Terms and abbreviations on page 196).	-
40.51	Set 1 trim mode	Activates the trim function and selects between direct and proportional trimming (or a combination of both). With trimming, it is possible to apply a corrective factor to the drive reference (setpoint). The output after trimming is available as parameter 40.05 Process PID trim output act.   See section PID trim function (page 135), and the control chain diagram on page 564.	Off
	Off	The trim function is inactive.	0
	Direct	The trim function is active. The trimming factor is relative to the maximum speed, torque or frequency; the selection between these is made by parameter 40.52 Set 1 trim selection.	1
	Proportional	The trim function is active. The trimming factor is relative to the reference selected by parameter 40.53 Set 1 trimmed ref pointer.	2
	Combined	The trim function is active. The trimming factor is a combination of both Direct and Proportional modes; the proportions of each are defined by parameter 40.54 Set 1 trim mix.	3
40.52	Set 1 trim selection	Selects whether trimming is used for correcting the speed, torque or frequency reference.	Speed
	Torque	Torque reference trimming.	1
	Speed	Speed reference trimming.	2
	Frequency	Frequency reference trimming.	3
40.53	Set 1 trimmed ref pointer	Selects the signal source for the trim reference.	Not selected
	Not selected	None.	0
	Al1 scaled	12.12 Al1 scaled value (see page 227).	1
	Al2 scaled	12.22 Al2 scaled value (see page 229).	2
	FB A ref1	03.05 FB A reference 1 (see page 202).	3
	FB A ref2	03.06 FB A reference 2 (see page 202).	4
	Other	Source selection (see Terms and abbreviations on page 196).	-
40.54	Set 1 trim mix	When parameter 40.51 Set 1 trim mode is set to Combined, defines the effect of direct and proportional trim sources in the final trimming factor.   $0.000=100 \%$ proportional   $0.500=50 \%$ proportional, $50 \%$ direct   $1.000=100 \%$ direct	0.000
	0.000 ... 1.000	Trim mix.	1 = 1
40.55	Set 1 trim adjust	Defines a multiplier for the trimming factor. This value is multiplied by the result of parameter 40.51 Set 1 trim mode. Consequently, the result of the multiplication is used to multiply the result of parameter 40.56 Set 1 trim source.	1.000
	$\begin{aligned} & \hline-100.000 \ldots \\ & 100.000 \end{aligned}$	Multiplier for trimming factor.	1 = 1


No.	Name/Value	Description	Def/FbEq16
40.56	Set 1 trim source	Selects the reference to be trimmed.	PID output
	PID ref	PID setpoint.	1
	PID output	PID controller output.	2
40.57	PID set1/set2 selection	Selects the source that determines whether process PID parameter set 1 (parameters 40.07...40.50) or set 2 (group 41 Process PID set 2) is used.	PID set 1
	PID set 1	0. Process PID parameter set 1 in use.	0
	PID set 2	1. Process PID parameter set 2 in use.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	21
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	22
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	23
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
40.58	Set 1 increase prevention	Activates and defines the type of the prevention of PID integration term increase for PID set 1.	No
	No	Increase prevention not in use.	0
	Limiting	The PID integration term is not increased if the maximum value for the PID output is reached. This parameter is valid for the PID set 1.	1
	Ext PID min lim	The process PID integration term is not increased when the output of the external PID has reached its minimum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1.	2
	Ext PID max lim	The process PID integration term is not increased when the output of the external PID has reached its maximum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1.	3
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
40.59	Set 1 decrease prevention	Prevention of PID integration term decrease for PID set 1.	No
	No	Decrease prevention not in use.	0
	Limiting	The PID integration term is not decreased if the minimum value for the PID output is reached. This parameter is valid for the PID set 1.	1
	Ext PID min lim	The process PID integration term is not decreased when the output of the external PID has reached its minimum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1.	2


No.	Name/Value	Description	Def/FbEq16
	Ext PID max lim	The process PID integration term is not decreased when the output of the external PID has reached its maximum limit. In this setup, the external PID is used as a source for the process PID. This parameter is valid for the PID set 1.	3
40.60	Set 1 PID activation source	Selects a source that enables/disables process PID control. See also parameter 40.07 Process PID operation mode.   $0=$ Process PID control disabled.   1 = Process PID control enabled.	On
	Off	0.	0
	On	1.	1
	Follow Ext1/Ext2 selection	Process PID control is disabled when external control location EXT1 is active, and enabled when external control location EXT2 is active.   See also parameter 19.11 Ext1/Ext2 selection.	2
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	3
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	4
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	5
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	6
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	7
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	8
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
40.61	Setpoint scaling actual	Actual setpoint scaling. See parameter 40.14 Set 1 setpoint scaling.	100.00
	$\begin{aligned} & -200000.00 \ldots \\ & 200000.00 \end{aligned}$	Scaling.	$1=1$
40.62	PID internal setpoint actual	Displays the value of the internal setpoint. See the control chain diagram on page 563.   This parameter is read-only.	-
	$\begin{aligned} & -200000.00 \ldots \\ & 200000.00 \mathrm{PID} \\ & \text { customer units } \end{aligned}$	Process PID internal setpoint.	1 = 1 PID customer unit
40.65	Trim auto connection	Enables the PID trim auto connection and connects PID trim 40.05 Process PID trim output act to either speed, torque or frequency chains, based on the trim selection parameter 40.52 Set 1 trim selection or 41.52 Set 2 trim selection.   See control chain diagram on page 568.	Disable
	Disable	Disable PID trim auto connection.	0
	Enable	Enable PID trim auto connection.	1
40.79	Set 1 units	Unit used for PID set 1.	${ }^{\circ} \mathrm{C}$
	User text	User editable text. User text default is "PID unit 1".	0
	\%		4
	bar		74
	kPa		75
	Pa		77
	psi		76
	CFM		26
	inH2O		58


No.	Name/Value	Description	Def/FbEq16
	${ }^{\circ} \mathrm{C}$		150
	${ }^{\circ} \mathrm{F}$		151
	mbar		44
	$\mathrm{m}^{3} / \mathrm{h}$		78
	$\mathrm{dm}^{3} / \mathrm{h}$		21
	I/s		79
	I/min		37
	I/h		38
	$\mathrm{m}^{3} / \mathrm{s}$		88
	$\mathrm{m}^{3} / \mathrm{min}$		40
	$\mathrm{km}^{3} / \mathrm{h}$		131
	$\mathrm{gal} / \mathrm{s}$		47
	$\mathrm{ft}^{3} / \mathrm{s}$		50
	$\mathrm{ft}^{3} / \mathrm{min}$		51
	$\mathrm{ft}^{3} / \mathrm{h}$		52
	ppm		34
	inHg		29
	kCFM		126
	inWC		85
	gpm		80
	gal/min		48
	in wg		59
	MPa		94
	ftWC		125
	\%		4
	bar		74
	kPa		75
	Pa		77
	psi		76
	CFM		26
	inH2O		58
	${ }^{\circ} \mathrm{C}$		150
	${ }^{\circ} \mathrm{F}$		151
	mbar		44
	$\mathrm{m}^{3} / \mathrm{h}$		78
	$\mathrm{dm}^{3} / \mathrm{h}$		21
	1/s		79
	1/min		37
	I/h		38
	$\mathrm{m}^{3} / \mathrm{s}$		88
	$\mathrm{m}^{3} / \mathrm{min}$		40


No.	Name/Value	Description	Def/FbEq16
	$\mathrm{km}^{3} / \mathrm{h}$		131
	$\mathrm{gal} / \mathrm{s}$		47
	$\mathrm{ft}^{3} / \mathrm{s}$		50
	$\mathrm{ft}^{3} / \mathrm{min}$		51
	$\mathrm{ft}^{3} / \mathrm{h}$		52
	ppm		34
	inHg		29
	kCFM		126
	inWC		65
	gpm		80
	$\mathrm{gal} / \mathrm{min}$		48
	in wg		59
	MPa		94
	ftWC		125
40.80	Set 1 PID output min source	Selects the source for set 1 PID output minimum.	Set1 output min
	None	Not selected.	0
	Set1 output min	40.36 Set 1 output min.	1
40.81	Set 1 PID output max source	Selects the source for set 1 PID output maximum.	Set1 output max
	None	Not selected.	0
	Set1 output max	40.37 Set 1 output max	1
40.89	Set 1 setpoint multiplier	Defines the multiplier with which the result of the function specified by parameter 40.18 Set 1 setpoint function is multiplied.	1.00
	$\begin{aligned} & \hline-200000.00 \ldots \\ & 200000.00 \end{aligned}$	Multiplier.	$1=1$
40.90	Set 1 feedback multiplier	Defines the multiplier with which the result of the function specified by parameter 40.10 Set 1 feedback function is multiplied.	1.00
	$\begin{aligned} & \hline-200000.00 \ldots \\ & 200000.00 \end{aligned}$	Multiplier.	$1=1$
40.91	Feedback data storage	Storage parameter for receiving a process feedback value, for example, through the embedded fieldbus interface.   The value can be sent to the drive as Modbus I/O data. Set the target selection parameter of that particular data (58.101...58.114) to Feedback data storage. In 40.08 Set 1 feedback 1 source (or 40.09 Set 1 feedback 2 source), select Feedback data storage.	-
	-327.68...327.67	Storage parameter for process feedback.	$100=1$
40.92	Setpoint data storage	Storage parameter for receiving a process setpoint value, for example, through the embedded fieldbus interface.   The value can be sent to the drive as Modbus I/O data. Set the target selection parameter of that particular data (58.101...58.114)) to Setpoint data storage. In 40.16 Set 1 setpoint 1 source (or 40.17 Set 1 setpoint 2 source), select Setpoint data storage.	-
	-327.68...327.67	Storage parameter for process setpoint.	$100=1$


No.	Name/Value	Description	Def/FbEq16
40.96	Process PID   output \%	Percentage scaled signal of parameter 40.01 Process PID   feedback actual.	$0.00 \%$
	$-100.00 \ldots 100.00 \%$	Percentage.	$100=1 \%$
40.97	Process PID   feedback \%	Percentage scaled signal of parameter 40.02 Process PID   feedback actual.	$0.00 \%$
	$-100.00 \ldots 100.00 \%$	Percentage.	$100=1 \%$
40.98	Process PID   setpoint \%	Percentage scaled signal of parameter 40.03 Process PID   setpoint actual.	$0.00 \%$
40.99	Process PID   deviation \%	Percentage scaled signal of parameter 40.04 Process PID   deviation actual.	$0.00 \%$
	$-100.00 \ldots 100.00 \%$	Percentage.	$100=1 \%$


41 Process PID set 2		A second set of parameter values for process PID control. The selection between this set and first set (parameter group 40 Process PID set 1 ) is made by parameter 40.57 PID set1/set2 selection.   See also parameters $40.01 \ldots 40.06$, and the control chain diagrams on pages 563 and 564.	
41.08	Set 2 feedback 1 source	See parameter 40.08 Set 1 feedback 1 source.	Al2 percent
41.09	Set 2 feedback 2 source	See parameter 40.09 Set 1 feedback 2 source.	Not selected
41.10	Set 2 feedback function	See parameter 40.10 Set 1 feedback function.	In1
41.11	Set 2 feedback filter time	See parameter 40.11 Set 1 feedback filter time.	0.000 s
41.14	Set 2 setpoint scaling	See parameter 40.14 Set 1 setpoint scaling.	0.00
41.15	Set 2 output scaling	See parameter 40.15 Set 1 output scaling.	0.00
41.16	Set 2 setpoint 1 source	See parameter 40.16 Set 1 setpoint 1 source.	Al1 percent
41.17	Set 2 setpoint 2 source	See parameter 40.17 Set 1 setpoint 2 source.	Not selected
41.18	Set 2 setpoint function	See parameter 40.18 Set 1 setpoint function.	$\ln 1$
41.19	Set 2 internal setpoint sel1	See parameter 40.19 Set 1 internal setpoint sel1.	Not selected
41.20	Set 2 internal setpoint sel2	See parameter 40.20 Set 1 internal setpoint sel2.	Not selected
41.21	Set 2 internal setpoint 1	See parameter 40.21 Set 1 internal setpoint 1.	0.00 PID customer units
41.22	Set 2 internal setpoint 2	See parameter 40.22 Set 1 internal setpoint 2.	0.00 PID customer units
41.23	Set 2 internal setpoint 3	See parameter 40.23 Set 1 internal setpoint 3.	0.00 PID customer units


No.	Name/Value	Description	Def/FbEq16
41.24	Set 2 internal setpoint 0	40.24 Set 1 internal setpoint 0 .	0.00 PID customer units
41.26	Set 2 setpoint min	See parameter 40.26 Set 1 setpoint min.	0.00 PID customer units
41.27	Set 2 setpoint max	See parameter 40.27 Set 1 setpoint max.	200000.00   PID customer units
41.28	Set 2 setpoint increase time	See parameter 40.28 Set 1 setpoint increase time.	0.0 s
41.29	Set 2 setpoint decrease time	See parameter 40.29 Set 1 setpoint decrease time.	0.0 s
41.30	Set 2 setpoint freeze enable	See parameter 40.30 Set 1 setpoint freeze enable.	Not selected
41.31	Set 2 deviation inversion	See parameter 40.31 Set 1 deviation inversion.	Not inverted (Ref-Fbk)
41.32	Set 2 gain	See parameter 40.32 Set 1 gain.	1.00
41.33	Set 2 integration time	See parameter 40.33 Set 1 integration time.	60.0 s
41.34	Set 2 derivation time	See parameter 40.34 Set 1 derivation time.	0.000 s
41.35	Set 2 derivation filter time	See parameter 40.35 Set 1 derivation filter time.	0.0 s
41.36	Set 2 output min	See parameter 40.36 Set 1 output min.	0.00
41.37	Set 2 output max	See parameter 40.37 Set 1 output max.	100.00
41.38	Set 2 output freeze enable	See parameter 40.38 Set 1 output freeze enable.	Not selected
41.39	Set 2 deadband range	See parameter 40.39 Set 1 deadband range.	0.0 PID customer units
41.40	Set 2 deadband delay	See parameter 40.40 Set 1 deadband delay.	0.0 s
41.43	Set 2 sleep level	See parameter 40.43 Set 1 sleep level.	0.0
41.44	Set 2 sleep delay	See parameter 40.44 Set 1 sleep delay.	60.0 s
41.45	Set 2 sleep boost time	See parameter 40.45 Set 1 sleep boost time.	0.0 s
41.46	Set 2 sleep boost step	See parameter 40.46 Set 1 sleep boost step.	0.0 PID customer units
41.47	Set 2 wake-up deviation	See parameter 40.47 Set 1 wake-up deviation.	0.00 PID customer units
41.48	Set 2 wake-up delay	See parameter 40.48 Set 1 wake-up delay.	0.50 s
41.49	Set 2 tracking mode	See parameter 40.49 Set 1 tracking mode.	Not selected
41.50	Set 2 tracking ref selection	See parameter 40.50 Set 1 tracking ref selection.	Not selected
41.51	Set 2 trim mode	See parameter 40.51 Set 1 trim mode.	Off


No.	Name/Value	Description	Def/FbEq16
41.52	Set 2 trim selection	See parameter 40.52 Set 1 trim selection.	Speed
41.53	Set 2 trimmed ref pointer	See parameter 40.53 Set 1 trimmed ref pointer.	Not selected
41.54	Set 2 trim mix	See parameter 40.54 Set 1 trim mix.	-
41.55	Set 2 trim adjust	See parameter 40.55 Set 1 trim adjust.	1.000
41.56	Set 2 trim source	See parameter 40.56 Set 1 trim source.	PID output
41.58	Set 2 increase prevention	See parameter 40.58 Set 1 increase prevention.	No
41.59	Set 2 decrease prevention	See parameter 40.59 Set 1 decrease prevention.	No
41.60	Set 2 PID activation source	See parameter 40.60 Set 1 PID activation source.	On
41.79	Set 2 units	See parameter 40.79 Set 1 units.	${ }^{\circ} \mathrm{C}$
41.80	Set 2 PID output min source	Selects the source for set 2 PID output minimum.	Set2 output min
	None	Not selected.	0
	Set2 output min	41.36 Set 2 output min.	1
41.81	Set 2 PID output max source	Selects the source for set 2 PID output maximum.	Set2 output max
	None	Not selected.	0
	Set2 output max	41.37 Set 2 output max	1
41.89	Set 2 setpoint multiplier	See parameter 40.89 Set 1 setpoint multiplier.	1.00
41.90	Set 2 feedback multiplier	Defines the multiplier $k$ used in formulas of parameter 41.10 Set 2 feedback function. See parameter 40.90 Set 1 feedback multiplier.	1.00


43 Brake chopper	Settings for the internal brake chopper.   Note: These parameters apply to internal brake chopper only.   When using external brake, you must disable brake chopper   function by setting parameter 43.06 Brake chopper function to   value Disabled.	
43.01	Braking resistor   temperature	Displays the estimated temperature of the brake resistor, or   how close the brake resistor is to being too hot.   The value is given in percent where 100\% is the eventual   temperature the resistor would reach when loaded long   enough with its rated maximum load capacity (43.09 Brake   resistor Pmax cont).   The temperature calculation is based on the values of   parameters 43.08, 43.09 and 43.10, and on the assumption   that the resistor is installed as instructed by the manufacturer   (that is, it cools down as expected).   This parameter is read-only.
Estimated brake resistor temperature.	-	

$\left.\begin{array}{|l|l|l|l|}\hline \text { No. } & \text { Name/Value } & \text { Description } & \text { Def/FbEq16 } \\ \hline 43.06 & \begin{array}{l}\text { Brake chopper } \\ \text { function }\end{array} & \begin{array}{l}\text { Enables brake chopper control and selects the brake resistor } \\ \text { overload protection method (calculation or measurement). } \\ \text { Note: Before enabling brake chopper control, ensure that } \\ \text { - a brake resistor is connected } \\ \text { - overvoltage control is switched off (parameter 30.30 } \\ \text { Overvoltage control) } \\ \text { - the supply voltage range (parameter 95.01 Supply voltage) } \\ \text { has been selected correctly. }\end{array} & \text { Disabled } \\ \hline & \begin{array}{l}\text { Note: When using external brake chopper, set this parameter } \\ \text { to value Disabled. }\end{array} & \\ \hline \text { Disabled } & \text { Brake chopper control disabled. } & 0 \\ \hline \begin{array}{l}\text { Enabled with } \\ \text { thermal model }\end{array} & \begin{array}{l}\text { Brake chopper control enabled with brake resistor protection } \\ \text { based on the thermal model. If you select this, you must also } \\ \text { specify the values needed by the model, ie. parameters } \\ \text { 43.08... 43.12. See the resistor data sheet. }\end{array} & 1 \\ \hline \begin{array}{l}\text { Enabled without } \\ \text { thermal model }\end{array} & \begin{array}{l}\text { Brake chopper control enabled without resistor overload } \\ \text { protection based on the thermal model. This setting can be } \\ \text { used, for example, if the resistor is equipped with a thermal } \\ \text { swith that is wired to open the main contactor of the drive if } \\ \text { the resistor overheats. } \\ \text { For more information, see chapter Resistor braking in the } \\ \text { Hardware manual of the drive }\end{array} & 2 \\ \hline \begin{array}{l}\text { Overvoltage peak } \\ \text { protection }\end{array} & \begin{array}{l}\text { Brake chopper control enabled in an overvoltage condition. } \\ \text { This setting is intended for situations where } \\ \text { - the braking chopper is not needed for runtime operation, } \\ \text { ie. to dissipate the inertial energy of the motor, }\end{array} & 3 \\ \hline \text { - the motor is able to store a considerable amount magnetic } \\ \text { energy in its windings, and }\end{array}\right\}$

No.	Name/Value	Description	Def/FbEq16
43.09	Brake resistor Pmax cont	Defines the maximum continuous load of the brake resistor that will eventually raise the resistor temperature to the maximum allowed value (= continuous heat dissipation capacity of the resistor in kW ) but not above it. The value is used in the resistor overload protection based on the thermal model. See parameter 43.06 Brake chopper function and the data sheet of the brake resistor used.	0.00 kW
	$\begin{aligned} & 0.00 \ldots \\ & 10000.00 \mathrm{~kW} \end{aligned}$	Maximum continuous load of the brake resistor.	1 = 1 kW
43.10	Brake resistance	Defines the resistance value of the brake resistor. The value is used for the brake resistor protection based on the thermal model. See parameter 43.06 Brake chopper function.	0.0 ohm
	0.0... 1000.0 ohm	Brake resistor resistance value.	1 = 1 ohm
43.11	Brake resistor fault limit	Selects the fault limit for the brake resistor protection based on the thermal model. See parameter 43.06 Brake chopper function. When the limit is exceeded, the drive trips on fault 7183 BR excess temperature.   The value is given in percent of the temperature the resistor reaches when loaded with the power defined by parameter 43.09 Brake resistor Pmax cont.	105\%
	0...150\%	Brake resistor temperature fault limit.	1 = 1\%
43.12	Brake resistor warning limit	Selects the warning limit for the brake resistor protection based on the thermal model. See parameter 43.06 Brake chopper function. When the limit is exceeded, the drive generates a $A 793 B R$ excess temperature warning.   The value is given in percent of the temperature the resistor reaches when loaded with the power defined by parameter 43.09 Brake resistor Pmax cont.	95\%
	0...150\%	Brake resistor temperature warning limit.	1 = 1\%


44 Mechanical brake   control	Configuration of mechanical brake control.   See also section Mechanical brake control (page 152).	
$44.01 \quad$ Brake control status	Displays the mechanical brake control status word.   This parameter is read-only.	-


Bit	Name	Information
0	Open command	Close/open command to brake actuator (0 = close, 1 = open).   Connect this bit to desired output.
1	Opening torque   request	$1=$ Opening torque requested from drive logic.
2	Hold stopped   request	$1=$ Hold requested from drive logic
3	Ramp to stopped	$1=$ Ramping down to zero speed requested from drive logic
4	Enabled	$1=$ Brake control is enabled
5	Closed	$1=$ Brake control logic in BRAKE CLOSED state
6	Opening	$1=$ Brake control logic in BRAKE OPENING state
7	Open	$1=$ Brake control logic in BRAKE OPEN state
8	Closing	$1=$ Brake control logic in BRAKE CLOSING state
$9 \ldots 15$	Reserved	

0000h...FFFFh $\quad$ Mechanical brake control status word. $\quad 1=1$

No.	Name/Value	Description	Def/FbEq16
44.06	Brake control enable	Activates/deactivates (or selects a source that activates/deactivates) the mechanical brake control logic.   $0=$ Brake control inactive   1 = Brake control active	Not selected
	Not selected	0.	0
	Selected	1.	1
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
44.08	Brake open delay	Defines the brake open delay, ie. the delay between the internal open brake command and the release of motor speed control. The delay timer starts when the drive has magnetized the motor. Simultaneously with the timer start, the brake control logic energizes the brake control output and the brake starts to open.   Set this parameter to the value of mechanical opening delay specified by the brake manufacturer.	0.00 s
	$0.00 \ldots 5.00 \mathrm{~s}$	Brake open delay.	$100=1 \mathrm{~s}$
44.13	Brake close delay	Specifies a delay between a close command (that is, when the brake control output is de-energized) and when the drive stops modulating. This is to keep the motor live and under control until the brake actually closes.   Set this parameter equal to the value specified by the brake manufacturer as the mechanical wake-up time of the brake.	0.00 s
	0.00...60.00 s	Brake close delay.	$100=1 \mathrm{~s}$
44.14	Brake close level	Defines the brake close speed as an absolute value. After motor speed has decelerated to this level, a close command is given.	100.00 rpm
	0.00...1000.00 rpm	Brake close speed.	See par. 46.01


No.	Name/Value	Description	Def/FbEq16
45 Energy efficiency		Settings for the energy saving calculators as well as peak and energy loggers.   See also section Energy saving calculators (page 186).	
45.01	Saved GW hours	Energy saved in GWh compared to direct-on-line motor connection. This parameter is incremented when 45.02 Saved MW hours rolls over.   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	0... 65535 GWh	Energy savings in GWh.	1 = 1 GWh
45.02	Saved MW hours	Energy saved in MWh compared to direct-on-line motor connection. This parameter is incremented when 45.03 Saved kW hours rolls over.   When this parameter rolls over, parameter 45.01 Saved GW hours is incremented.   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	0... 999 MWh	Energy savings in MWh.	1 = 1 MWh
45.03	Saved kW hours	Energy saved in kWh compared to direct-on-line motor connection.   If the internal brake chopper of the drive is enabled, all energy fed by the motor to the drive is assumed to be converted into heat, but the calculation still records savings made by controlling the speed. If the chopper is disabled, then regenerated energy from the motor is also recorded here. When this parameter rolls over, parameter 45.02 Saved MW hours is incremented.   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	0.0...999.9 kWh	Energy savings in kWh.	$10=1 \mathrm{kWh}$
45.04	Saved energy	Energy saved in kWh compared to direct-on-line motor connection.   If the internal brake chopper of the drive is enabled, all energy fed by the motor to the drive is assumed to be converted into heat.   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	$\begin{aligned} & \hline 0.0 \ldots 214748352.0 \\ & \text { kWh } \end{aligned}$	Energy savings in kWh.	$1=1 \mathrm{kWh}$
45.05	$\begin{aligned} & \text { Saved money } \\ & \text { x1000 } \end{aligned}$	Monetary savings in thousands compared to direct-on-line motor connection. This parameter is incremented when 45.06 Saved money rolls over.   You can define the currency during the first start up or from primary settings (Main menu - Primary settings - Clock, region display - Units - Currency).   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	$\begin{aligned} & 0 \ldots 4294967295 \\ & \text { thousands } \end{aligned}$	Monetary savings in thousands of units.	1 = 1 unit


No.	Name/Value	Description	Def/FbEq16
45.06	Saved money	Monetary savings compared to direct-on-line motor connection. This value is a calculated by multiplying the saved energy in kWh by the currently active energy tariff (45.14 Tariff selection).   When this parameter rolls over, parameter 45.05 Saved money $\times 1000$ is incremented.   You can define the currency during the first start up or from primary settings (Main menu - Primary settings - Clock, region display - Units - Currency).   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	0.00...999.99 units	Monetary savings.	$1=1$ unit
45.07	Saved amount	Monetary savings compared to direct-on-line motor connection. This value is a calculated by multiplying the saved energy in kWh by the currently active energy tariff (45.14 Tariff selection).   You can define the currency during the first start up or from primary settings (Main menu - Primary settings - Clock, region display - Units - Currency).   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	$\begin{aligned} & \hline 0.00 \ldots \\ & 21474830.08 \text { units } \end{aligned}$	Monetary savings.	1 = 1 unit
45.08	CO2 reduction in kilotons	Reduction in $\mathrm{CO}_{2}$ emissions in metric kilotons compared to direct-on-line motor connection. This value is incremented when parameter 45.09 CO reduction in tons rolls over. This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	0... 65535 metric kilotons	Reduction in $\mathrm{CO}_{2}$ emissions in metric kilotons.	$\begin{array}{\|l\|l\|} \hline 1=1 \text { metric } \\ \text { kiloton } \end{array}$
45.09	CO2 reduction in tons	Reduction in $\mathrm{CO}_{2}$ emissions in metric tons compared to direct-on-line motor connection. This value is calculated by multiplying the saved energy in MWh by the value of parameter 45.18 CO2 conversion factor (by default, 0.5 metric tons/MWh).   When this parameter rolls over, parameter 45.08 CO2 reduction in kilotons is incremented.   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	0.0...999.9 metric tons	Reduction in $\mathrm{CO}_{2}$ emissions in metric tons.	$1 \text { = } 1 \text { metric }$ ton
45.10	Total saved CO2	Reduction in $\mathrm{CO}_{2}$ emissions in metric tons compared to direct-on-line motor connection. This value is calculated by multiplying the saved energy in MWh by the value of parameter 45.18 CO2 conversion factor (by default, 0.5 metric tons/MWh).   This parameter is read-only (see parameter 45.21 Energy calculations reset).	-
	$0.0 \ldots 214748300.8 .$   metric tons	Reduction in $\mathrm{CO}_{2}$ emissions in metric tons.	$1 \text { = } 1 \text { metric }$ ton


No.	Name/Value	Description
45.11	Energy optimizer	Enables/disables the energy optimization function. The   function optimizes the motor flux so that total energy   consumption and motor noise level are reduced when the   drive operates below the nominal load. The total efficiency   (motor and drive) can be improved by 1...20\% depending on   load torque and speed.   Note: With a permanent magnet motor and a synchronous   reluctance motor, energy optimization is always enabled   regardless of this parameter.   Note: Do no use energy optimizer in multimotor systems.
		Disable
	Enable	Energy optimization disabled.


No.	Name/Value	Description	Def/FbEq16
45.19	Comparison power	Actual power that the motor absorbs when connected direct-on-line and operating the application. The value is used for reference when energy savings are calculated.   Note: The accuracy of the energy savings calculation is directly dependent on the accuracy of this value. If nothing is entered here, then the nominal motor power is used by the calculation, but that may inflate the energy savings reported as many motors do not absorb nameplate power.	0.00 kW
	$\begin{aligned} & 0.00 \ldots 10000000.00 \\ & \text { kW } \end{aligned}$	Motor power.	1 = 1 kW
45.21	Energy calculations reset	Resets the savings counter parameters 45.01...45.10.	Done
	Done	Reset not requested (normal operation), or reset complete.	0
	Reset	Reset the savings counter parameters. The value reverts automatically to Done.	1
45.24	Hourly peak power value	Value of the peak power during the last hour, that is, the most recent 60 minutes after the drive has been powered up. The parameter is updated once every 10 minutes unless the hourly peak is found in the most recent 10 minutes. In that case, the values is shown immediately.	0.00 kW
	$\begin{aligned} & \hline-3000.00 \ldots \\ & 3000.00 \mathrm{~kW} \end{aligned}$	Peak power value.	$10=1 \mathrm{~kW}$
45.25	Hourly peak power time	Time of the peak power value during the last hour.	00:00:00
		Time.	N/A
45.26	Hourly total energy (resettable)	Total energy consumption during the last hour, that is, the most recent 60 minutes.   You can reset the value by setting it to zero.	0.00 kWh
	$\begin{aligned} & -3000.00 \ldots \\ & 3000.00 \mathrm{kWh} \end{aligned}$	Total energy.	$10=1 \mathrm{kWh}$
45.27	Daily peak power value (resettable)	Value of the peak power since midnight of the present day. You can reset the value by setting it to zero.	0.00 kW
	$\begin{aligned} & -3000.00 \ldots \\ & 3000.00 \mathrm{~kW} \end{aligned}$	Peak power value.	$10=1 \mathrm{~kW}$
45.28	Daily peak power time	Time of the peak power since midnight of the present day.	00:00:00
		Time.	N/A
45.29	Daily total energy (resettable)	Total energy consumption since midnight of the present day. You can reset the value by setting it to zero.	0.00 kWh
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{kWh} \end{aligned}$	Total energy.	$1=1 \mathrm{kWh}$
45.30	Last day total energy	Total energy consumption during the previous day, that is, between midnight of the previous day and midnight of the present day	0.00 kWh
	$\begin{aligned} & -30000.00 \ldots \\ & 30000.00 \mathrm{kWh} \end{aligned}$	Total energy.	$1=1 \mathrm{kWh}$
45.31	Monthly peak power value (resettable)	Value of the peak power during the present month, that is, since midnight of the first day of the present month. You can reset the value by setting it to zero.	0.00 kW
	$\begin{aligned} & -3000.00 \ldots \\ & 3000.00 \mathrm{~kW} \end{aligned}$	Peak power value.	$10=1 \mathrm{~kW}$


No.	Name/Value	Description	Def/FbEq16
45.32	Monthly peak power date	Date of the peak power during the present month.	1.1.1980
		Date.	N/A
45.33	Monthly peak power time	Time of the peak power during the present month.	00:00:00
		Time.	N/A
45.34	Monthly total energy (resettable)	Total energy consumption from the beginning of the present month.   You can reset the value by setting it to zero.	0.00 kWh
	$\begin{aligned} & \hline-1000000.00 \ldots \\ & 1000000.00 \mathrm{kWh} \end{aligned}$	Total energy.	$0.01=1 \mathrm{kWh}$
45.35	Last month total energy	Total energy consumption during the previous month, that is, between midnight of the first day or the previous month and midnight of the first day of the present month.	0.00 kWh
	$\begin{aligned} & \hline-1000000.00 \ldots \\ & 1000000.00 \mathrm{kWh} \end{aligned}$		$0.01=1 \mathrm{kWh}$
45.36	Lifetime peak power value	Value of the peak power over the drive lifetime.	0.00 kW
	$\begin{aligned} & -3000.00 \ldots \\ & 3000.00 \mathrm{~kW} \end{aligned}$	Peak power value.	$10=1 \mathrm{~kW}$
45.37	Lifetime peak power date	Date of the peak power over the drive lifetime.	1.1.1980
		Date.	N/A
45.38	Lifetime peak power time	Time of the peak power over the drive lifetime.	00:00:00
		Time.	N/A
46 Monitoring/scaling settings		Speed supervision settings; actual signal filtering; general scaling settings.	
46.01	Speed scaling	Defines the maximum speed value used to define the acceleration ramp rate and the initial speed value used to define the deceleration ramp rate (see parameter group 23 Speed reference ramp). The speed acceleration and deceleration ramp times are therefore related to this value (not to parameter 30.12 Maximum speed).   Also defines the 16-bit scaling of speed-related parameters. The value of this parameter corresponds to 20000 in, for example, fieldbus communication.	$\begin{aligned} & 1500.00 \mathrm{rpm} ; \\ & 1800.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & 0.10 \ldots 30000.00 \\ & \text { rpm } \end{aligned}$	Acceleration/deceleration terminal/initial speed.	1 = 1 rpm
46.02	Frequency scaling	Defines the maximum frequency value used to define the acceleration ramp rate and the initial frequency value used to define deceleration ramp rate (see parameter group 28 Frequency reference chain). The frequency acceleration and deceleration ramp times are therefore related to this value (not to parameter 30.14 Maximum frequency).   Also defines the 16-bit scaling of frequency-related parameters. The value of this parameter corresponds to 20000 in, for example, fieldbus communication.	$\begin{aligned} & 50.00 \mathrm{~Hz} \\ & 60.00 \mathrm{~Hz} \\ & (95.20 \mathrm{bO}) \end{aligned}$
	0.10...1000.00 Hz	Acceleration/deceleration terminal/initial frequency.	$10=1 \mathrm{~Hz}$


No.	Name/Value	Description	Def/FbEq16
46.03	Torque scaling	Defines the 16 -bit scaling of torque parameters. The value of this parameter (in percent of nominal motor torque) corresponds to 10000 in , for example, fieldbus communication.	100.0\%
	0.1...1000.0\%	Torque corresponding to 10000 on fieldbus.	$10=1 \%$
46.04	Power scaling	Defines the 16 -bit scaling of power parameters. The value of this parameter corresponds to 10000 in the fieldbus communication. The unit is selected by parameter 96.16 Unit selection.   For 32-bit scaling see 46.43 Power decimals.	1000.00
	$\begin{aligned} & \hline 0.10 \ldots 30000.00 \\ & \mathrm{~kW} \text { or } \\ & 0.10 \ldots 40214.48 \\ & \mathrm{hp} \end{aligned}$	Power corresponding to 10000 on fieldbus.	1 = 1
46.05	Current scaling	Defines the 16 -bit scaling of current parameters. The value of this parameter corresponds to 10000 in fieldbus communication.   For 32-bit scaling see 46.44 Current decimals.	10000 A
	0... 30000 A	Current corresponding to 10000 on fieldbus.	$1=1 \mathrm{~A}$
46.06	Speed ref zero scaling	Defines a speed corresponding to a zero reference received from fieldbus (either the embedded fieldbus interface, or interface FBAA). For example, with a setting of 500 , the fieldbus reference range of $0 \ldots 20000$ would correspond to a speed of 500...[46.01] rpm.   Note: This parameter is effective only with the ABB Drives communication profile.	0.00 rpm
	$\begin{aligned} & 0.00 \ldots 30000.00 \\ & \text { rpm } \end{aligned}$	Speed corresponding to minimum fieldbus reference.	1 = 1 rpm
46.07	Frequency ref zero scaling	Defines a frequency corresponding to a zero reference received from fieldbus (either the embedded fieldbus interface, or interface FBA). For example, with a setting of 30 , the fieldbus reference range of $0 \ldots 20000$ would correspond to a speed of $30 \ldots$ [46.02] Hz.   Note: This parameter is effective only with the ABB Drives communication profile.	0.00 Hz
	$0.00 \ldots 1000.00 \mathrm{~Hz}$	Frequency corresponding to minimum fieldbus reference.	$10=1 \mathrm{~Hz}$
46.11	Filter time motor speed	Defines a filter time for signals 01.01 Motor speed used and 01.02 Motor speed estimated.	500 ms
	2... 20000 ms	Motor speed signal filter time.	$1=1 \mathrm{~ms}$
46.12	Filter time output frequency	Defines a filter time for signal 01.06 Output frequency.	500 ms
	2... 20000 ms	Output frequency signal filter time.	$1=1 \mathrm{~ms}$
46.13	Filter time motor torque	Defines a filter time for signal 01.10 Motor torque.	100 ms
	2... 20000 ms	Motor torque signal filter time.	$1=1 \mathrm{~ms}$
46.14	Filter time power	Defines a filter time for signal 01.14 Output power.	100 ms
	2... 20000 ms	Output power signal filter time.	$1=1 \mathrm{~ms}$


No.	Name/Value	Description	Def/FbEq16
46.21	At speed hysteresis	Defines the "at setpoint" limits for speed control of the drive. When the difference between reference (22.87 Speed reference act 7) and the speed (24.02 Used speed feedback) is smaller than 46.21 At speed hysteresis, the drive is considered to be "at setpoint". This is indicated by bit 8 of 06.11 Main status word. $\underset{\left(\begin{array}{l} \text { Drive at setpoint } \\ (06.11 \text { bit } 8=1) \end{array}\right.}{\left\{\begin{array}{l} 24.02(\mathrm{rpm}) \\ -2.87+46.21(\mathrm{rpm}) \\ 22.87(\mathrm{rpm}) \\ 22.87-46.21(\mathrm{rpm}) \end{array}\right.}$	50.00 rpm
	$\begin{aligned} & \text { 0.00... } 30000.00 \\ & \mathrm{rpm} \end{aligned}$	Limit for "at setpoint" indication in speed control.	$\begin{array}{\|l\|} \hline \text { See par. } \\ 46.01 \end{array}$
46.22	At frequency hysteresis	Defines the "at setpoint" limits for frequency control of the drive. When the absolute difference between reference (28.96 Frequency ref ramp input) and actual frequency (01.06 Output frequency) is smaller than 46.22 At frequency hysteresis, the drive is considered to be "at setpoint". This is indicated by bit 8 of 06.11 Main status word.	2.00 Hz
	0.00... 1000.00 Hz	Limit for "at setpoint" indication in frequency control.	$\begin{aligned} & \hline \text { See par. } \\ & 46.02 \end{aligned}$


No.	Name/Value	Description	Def/FbEq16
46.23	At torque hysteresis	Defines the "at setpoint" limits for torque control of the drive. When the absolute difference between reference (26.73 Torque reference act 4) and actual torque (01.10 Motor torque) is smaller than 46.23 At torque hysteresis, the drive is considered to be "at setpoint". This is indicated by bit 8 of 06.11 Main status word. $\underset{\left(\begin{array}{l} \text { Drive at setpoint } \\ (06.11 \text { bit } 8=1) \end{array}\right.}{\left\{\begin{array}{l} \text { - } 26.73+46.23(\%) \\ -26.73(\%) \\ -26.73-46.23(\%) \end{array}\right.} \begin{aligned} & 0 \% \end{aligned}$	5.0\%
	0.0...300.0\%	Limit for "at setpoint" indication in torque control.	See par. $46.03$
46.31	Above speed limit	Defines the trigger level for "above limit" indication in speed control. When actual speed exceeds the limit, bit 10 of 06.17 Drive status word 2 and bit 10 of 06.11 Main status word are set.	$\begin{aligned} & 1500.00 \mathrm{rpm} ; \\ & 1800.00 \mathrm{rpm} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	$\begin{aligned} & 0.00 \ldots 30000.00 \\ & \text { rpm } \end{aligned}$	"Above limit" indication trigger level for speed control.	See par. 46.01
46.32	Above frequency limit	Defines the trigger level for "above limit" indication in frequency control. When actual frequency exceeds the limit, bit 10 of 06.17 Drive status word 2 and bit 10 of 06.11 Main status word are set.	$\begin{aligned} & 50.00 \mathrm{~Hz} \\ & 60.00 \mathrm{~Hz} \\ & (95.20 \mathrm{b0}) \end{aligned}$
	0.00...1000.00 Hz	"Above limit" indication trigger level for frequency control.	See par. $46.02$
46.33	Above torque limit	Defines the trigger level for "above limit" indication in torque control. When actual torque exceeds the limit, bit 10 of 06.17 Drive status word 2 and bit 10 of 06.11 Main status word are set.	300.0\%
	0.0...1600.0\%	"Above limit" indication trigger level for torque control.	See par. $46.03$
46.41	kWh pulse scaling	Defines the trigger level for the "kWh pulse" on for 50 ms . The output of the pulse is bit 9 of 05.22 Diagnostic word 3 .	1.000 kWh
	$\begin{aligned} & 0.001 \ldots \\ & 1000.000 \mathrm{kWh} \end{aligned}$	"kWh pulse" on trigger level.	$1=1 \mathrm{kWh}$
46.43	Power decimals	Defines the number of display decimals places and 32-bit scaling of power-related parameters. The value of this parameter corresponds to the number of decimals assumed in the 32 -bit integer fieldbus communication (for 16 -bit scaling see 46.04 Power scaling).	2
	0... 3	Number of decimals.	1 = 1
46.44	Current decimals	Defines the number of display decimals places and 32-bit scaling of current-related parameters. The value of this parameter corresponds to the number of decimals assumed in the 32 -bit integer fieldbus communication (for 16 -bit scaling see 46.05 Current scaling).	1
	0... 3	Number of decimals.	1 = 1


No.	Name/Value	Description	Def/FbEq16
47 Data storage		Data storage parameters that can be written to and read from using other parameters' source and target settings.   Note that there are different storage parameters for different data types.   See also section Data storage parameters (page 191).	
47.01	Data storage 1 real32	Data storage parameter 1.	0.000
	$\begin{aligned} & -2147483.000 \ldots \\ & 2147483.000 \end{aligned}$	32-bit data.	-
47.02	Data storage 2 real32	Data storage parameter 2.	0.000
	$\begin{aligned} & \hline-2147483.000 \ldots \\ & 2147483.000 \end{aligned}$	32-bit data.	-
47.03	Data storage 3 real32	Data storage parameter 3.	0.000
	$\begin{aligned} & \hline-2147483.000 \ldots \\ & 2147483.000 \end{aligned}$	32-bit data.	-
47.04	Data storage 4 real32	Data storage parameter 4.	0.000
	$\begin{aligned} & \hline-2147483.000 \ldots \\ & 2147483.000 \end{aligned}$	32-bit data.	-
47.11	Data storage 1 int32	Data storage parameter 9.	0
	$\begin{aligned} & -2147483648 \ldots \\ & 2147483647 \end{aligned}$	32-bit data.	-
47.12	Data storage 2 int32	Data storage parameter 10.	0
	$\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$	32-bit data.	-
47.13	$\begin{aligned} & \text { Data storage } 3 \\ & \text { int32 } \end{aligned}$	Data storage parameter 11.	0
	$\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$	32-bit data.	-
47.14	Data storage 4 int32	Data storage parameter 12.	0
	$\begin{aligned} & -2147483648 \ldots \\ & 2147483647 \end{aligned}$	32-bit data.	-
47.21	Data storage 1 int16	Data storage parameter 17.	0
	-32768... 32767	16-bit data.	$1=1$
47.22	Data storage 2 int16	Data storage parameter 18.	0
	-32768...32767	16-bit data.	1 = 1
47.23	Data storage 3 int16	Data storage parameter 19.	0
	-32768... 32767	16-bit data.	$1=1$


No.	Name/Value	Description	Def/FbEq16
47.24	Data storage 4 int16	Data storage parameter 20.	0
	-32768... 32767	16-bit data.	$1=1$
49 Panel port communication		Communication settings for the control panel port on the drive.	
49.01	Node ID number	Defines the node ID of the drive. All devices connected to the network must have a unique node ID.   Note: For networked drives, it is advisable to reserve ID 1 for spare/replacement drives.	1
	1... 32	Node ID.	1 = 1
49.03	Baud rate	Defines the transfer rate of the link.	115.2 kbps
	38.4 kbps	38.4 kbit/s.	1
	57.6 kbps	57.6 kbit/s.	2
	86.4 kbps	86.4 kbit/s.	3
	115.2 kbps	115.2 kbit/s.	4
	230.4 kbps	230.4 kbit/s.	5
49.04	Communication loss time	Sets a timeout for control panel (or PC tool) communication. If a communication break lasts longer than the timeout, the action specified by parameter 49.05 Communication loss action is taken.	10.0 s
	0.3...3000.0 s	Control panel/PC tool communication timeout.	$10=1 \mathrm{~s}$
49.05	Communication loss action	Selects how the drive reacts to a control panel (or PC tool) communication break.	Fault
	No action	No action taken.	0
	Fault	Drive trips on 7081 Control panel loss.	1
	Last speed	Drive generates an A7EE Panel loss warning and freezes the speed to the level the drive was operating at. The speed is determined on the basis of actual speed using 850 ms lowpass filtering. $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break.	2
	Speed ref safe	Drive generates an A7EE Panel loss warning and sets the speed to the speed defined by parameter 22.41 Speed ref safe (or 28.41 Frequency ref safe when frequency reference is being used). $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break.	3
49.06	Refresh settings	Applies the settings of parameters 49.01...49.05.   Note: Refreshing may cause a communication break, so reconnecting the drive may be required.	Done
	Done	Refresh done or not requested.	0
	Configure	Refresh parameters 49.01...49.05. The value reverts automatically to Done.	1
49.19	Basic panel home view 1	Selects the parameter that is shown in Home view 1 of the Basic control panel (ACS-BP-S) when the active external control location is EXT1.   Home view 1 is toggled automatically between Home view 4 (parameter 49.219) according to the active external control location EXT1 or EXT2, respectively.	Auto


No.	Name/Value	Description	Def/FbEq16
	Auto	Shows the factory default parameters.	0
	Motor speed used	01.01 Motor speed used	1
	Output frequency	01.06 Output frequency	3
	Motor current	01.07 Motor current	4
	Motor current \% of motor nominal	01.08 Motor current \% of motor nom	5
	Motor torque	01.10 Motor torque	6
	DC voltage	01.11 DC voltage	7
	Output power	01.14 Output power	8
	Speed ref ramp in	23.01 Speed ref ramp input	10
	Speed ref ramp out	23.02 Speed ref ramp output	11
	Speed ref used	24.01 Used speed reference	12
	Freq ref used	28.02 Frequency ref ramp output	14
	Process PID out	40.01 Process PID output actual	16
	Temp sensor 1 excitation	Excitation current to the temperature sensor 1 , see parameter 35.11 Temperature 1 source. See also section Motor thermal protection (page 177).	20
	Temp sensor 2 excitation	Excitation current to the temperature sensor 2, see parameter 35.21 Temperature 2 source. See also section Motor thermal protection (page 177).	21
	Abs motor speed used	01.61 Abs motor speed used	26
	Abs motor speed \%	01.62 Abs motor speed \%	27
	Abs output frequency	01.63 Abs output frequency	28
	Abs motor torque	01.64 Abs motor torque	30
	Abs output power	01.65 Abs output power	31
	Abs motor shaft power	01.68 Abs motor shaft power	32
	External PID1 out	71.01 External PID act value	33
	AO1 data storage	13.91 AO1 data storage	37
	AO2 data storage	13.92 AO2 data storage	38
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
49.20	Basic panel home view 2	Selects the parameters that are shown in Home view 2 of the integrated or Basic control panel (ACS-BP-S) when the active external control location is EXT1.   Home view 2 is toggled automatically between Home view 5 (parameter 49.220) according to the active external control location EXT1 or EXT2, respectively.   For the selections, see parameter 49.19 Basic panel home view 1.	Auto


No.	Name/Value	Description	Def/FbEq16
49.21	Basic panel home   view 3	Selects the parameters that are shown in Home view 3 of the   integrated or Basic control panel (ACS-BP-S) when the active   external control location is EXT1.   Home view 3 is toggled automatically between Home view 6   (parameter 49.221) according to the active external control   location EXT1 or EXT2, respectively.   For the selections, see parameter 49.19 Basic panel home   view 1.	Auto
49.219	Basic panel home   view 4	Selects the parameters that are shown in Home view 4 of the   integrated or Basic control panel (ACS-BP-S) when the active   external control location is EXT2.   Home view 1 (parameter 49.19) is toggled automatically   between Home view 4 according to the active external control   location EXT1 or EXT2, respectively.   For the selections, see parameter 49.19 Basic panel home   view 1.	
49.220	Basic panel home   view 5	Selects the parameters that are shown in Home view 5 of the   integrated or Basic control panel (ACS-BP-S) when the active   external control location is EXT2.   Home view 2 (parameter 49.20) is toggled automatically   between Home view 5 according to the active external control   location EXT1 or EXT2, respectively.   For the selections, see parameter 49.19 Basic panel home   view 1.	Auto
49.221	Basic panel home   view 6	Selects the parameters that are shown in Home view 6 of the   integrated or Basic control panel (ACS-BP-S) when the active   external control location is EXT2.   Home view 3 (parameter 49.21) is toggled automatically   between Home view 6 according to the active external control   location EXT1 or EXT2, respectively.   For the selections, see parameter 49.19 Basic panel home   view 1.	Auto


50 Fieldbus adapter (FBA)	Fieldbus communication configuration.   See also chapter Fieldbus control through a fieldbus adapter (page 535).	
50.01 FBA A enable	Enables/disables communication between the drive and fieldbus adapter A, and specifies the slot the adapter is installed into.	Enable
Disable	Communication between drive and fieldbus adapter $A$ disabled.	0
Enable	Communication between drive and fieldbus adapter A enabled. The adapter is in slot 1.	1
50.02 FBA A comm loss func	Selects how the drive reacts upon a fieldbus communication break. The time delay is defined by parameter 50.03 FBA A comm loss tout.	No action
No action	No action taken.	0
Fault	Drive trips on 7510 FBA A communication. This only occurs if control is expected from the fieldbus (FBAA selected as source of start/stop/reference in the currently active control location).	1


No.	Name/Value	Description		Def/FbEq16
	Last speed	Drive generates a warning (A7C1 FBAA communication) and freezes the speed to the level the drive was operating at. This only occurs if control is expected from the fieldbus.   The speed is determined on the basis of actual speed using 850 ms low-pass filtering. WARNING! Make sure that it is safe to continue operation in case of a communication break.		2
	Speed ref safe	Drive generates a warning (A7C1 FBAA communication) and sets the speed to the value defined by parameter 22.41 Speed ref safe (in speed control) or 28.41 Frequency ref safe (in frequency control). This only occurs if control is expected from the fieldbus.   4   WARNING! Make sure that it is safe to continue operation in case of a communication break.		3
	Fault always	Drive trips on 7510 FBA A communication. This occurs even though no control is expected from the fieldbus.		4
	Warning	Drive generates an A7C1 FBA A communication warning. This only occurs if control is expected from the fieldbus.$\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break.		5
50.03	FBA A comm loss $t$ out	Defines the time delay before the action defined by parameter 50.02 FBA A comm loss func is taken. Time count starts when the communication link fails to update the message.   Note: There is a 60 -second boot-up delay immediately after power-up. During the delay, the communication break monitoring is disabled (but communication itself can be active).		0.3 s
	$0.3 . .6553 .5$ s	Time delay.		$1=1 \mathrm{~s}$
50.04	FBA A ref1 type	Selects the type and scaling of reference 1 received from fieldbus adapter A. The scaling of the reference is defined by parameters $46.01 \ldots 46.04$, depending on which reference type is selected by this parameter.		Speed or frequency
	Speed or frequency	Type and scaling is chosen automatically according to the currently active operation mode as follows:		0
		Operation mode   Reference 1 type		
		Speed control	Speed	
		Torque control	Speed	
		Frequency control	Frequency	
	Transparent	No scaling is applied (the 16-bit scaling is $1=1$ unit).		1
	General	Generic reference with a 16 -bit scaling of $100=1$ (ie. integer and two decimals).		2
	Torque	The scaling is defined by parameter 46.03 Torque scaling.		3
	Speed	The scaling is defined by parameter 46.01 Speed scaling.		4
	Frequency	The scaling is defined by parameter 46.02 Frequency scaling.		5


No.	Name/Value	Description		Def/FbEq16
50.05	FBA A ref2 type	Selects the type and scaling of reference 2 received from fieldbus adapter A . The scaling of the reference is defined by parameters 46.01...46.04, depending on which reference type is selected by this parameter.		Speed or frequency
Speed or frequency		Type and scaling is chosen automatically according to the currently active operation mode as follows:		0
		Operation mode (see par. 19.01)	Reference 2 type	
		Speed control	Torque	
		Torque control	Torque	
		Frequency control	Torque	
	Transparent	No scaling is applied (the 16-bit scaling is $1=1$ unit).		1
	General	Generic reference with a 16 -bit scaling of $100=1$ (ie. integer and two decimals).		2
	Torque	The scaling is defined by parameter 46.03 Torque scaling.		3
	Speed	The scaling is defined by parameter 46.01 Speed scaling.		4
	Frequency	The scaling is defined by parameter 46.02 Frequency scaling.		5
50.06	FBA A SW sel	Selects the source of the Status word to be sent to the fieldbus network through fieldbus adapter A .		Auto
	Auto	Source of the Status word is chosen automatically.		0
	Transparent mode	The source selected by parameter 50.09 FBA A SW transparent source is transmitted as the Status word to the fieldbus network through fieldbus adapter A.		1
50.07	FBA A actual 1 type	Selects the type and scaling of actual value 1 transmitted to the fieldbus network through fieldbus adapter A. The scaling of the value is defined by parameters $46.01 \ldots 46.04$, depending on which actual value type is selected by this parameter.		Speed or frequency
Speed or frequency		Type and scaling is chosen automatically according to the currently active operation mode as follows:		0
		Operation mode (see par. 19.01)	Actual value 1 type	
		Speed control	Speed	
		Torque control	Speed	
		Frequency control	Frequency	
	Transparent	The value selected by parameter 50.10 FBA A act1 transparent source is sent as actual value 1 . No scaling is applied (the 16 -bit scaling is $1=1$ unit).		1
	General	The value selected by parameter 50.10 FBA A act1 transparent source is sent as actual value 1 with a 16-bit scaling of $100=1$ unit (ie. integer and two decimals).		2
	Torque	01.10 Motor torque is sent as actual value 1. The scaling is defined by parameter 46.03 Torque scaling.		3
	Speed	01.01 Motor speed used is sent as actual value 1. The scaling is defined by parameter 46.01 Speed scaling.		4
	Frequency	01.06 Output frequency is sent as actual value 1. The scaling is defined by parameter 46.02 Frequency scaling.		5



No.	Name/Value	Description	Def/FbEq16
50.13	FBA A control word	Displays the raw (unmodified) control word sent by the master (PLC) to fieldbus adapter A if debugging is enabled by parameter 50.12 FBA A debug mode.   This parameter is read-only.	-
	$\begin{aligned} & \text { 00000000h... } \\ & \text { FFFFFFFFh } \end{aligned}$	Control word sent by master to fieldbus adapter A.	-
50.14	FBA A reference 1	Displays raw (unmodified) reference REF1 sent by the master (PLC) to fieldbus adapter A if debugging is enabled by parameter 50.12 FBA A debug mode.   This parameter is read-only.	-
	$\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$	Raw REF1 sent by master to fieldbus adapter A.	-
50.15	FBA A reference 2	Displays raw (unmodified) reference REF2 sent by the master (PLC) to fieldbus adapter A if debugging is enabled by parameter 50.12 FBA A debug mode.   This parameter is read-only.	-
	$\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$	Raw REF2 sent by master to fieldbus adapter $A$.	-
50.16	FBA A status word	Displays the raw (unmodified) status word sent by fieldbus adapter $A$ to the master (PLC) if debugging is enabled by parameter 50.12 FBA A debug mode.   This parameter is read-only.	-
	00000000h... FFFFFFFFh	Status word sent by fieldbus adapter A to master.	-
50.17	FBA A actual value 1	Displays raw (unmodified) actual value ACT1 sent by fieldbus adapter $A$ to the master (PLC) if debugging is enabled by parameter 50.12 FBA A debug mode.   This parameter is read-only.	-
	$\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$	Raw ACT1 sent by fieldbus adapter A to master.	-
50.18	FBA A actual value 2	Displays raw (unmodified) actual value ACT2 sent by fieldbus adapter A to the master (PLC) if debugging is enabled by parameter 50.12 FBA A debug mode.   This parameter is read-only.	-
	$\begin{aligned} & \hline-2147483648 \ldots \\ & 2147483647 \end{aligned}$	Raw ACT2 sent by fieldbus adapter A to master.	-


51 FBA A settings	Fieldbus adapter A configuration.	
51.01 FBA A type	Displays the type of the connected fieldbus adapter module. If value is $\mathbf{0}=$ None, module is not found or is not properly connected, or is disabled by parameter 50.01 FBA A enable.   1 = PROFIBUS-DP   32 = CANopen   37 = DeviceNet   128 = Ethernet   132 = PROFInet IO   135 = EtherCAT   136 = ETH Pwrlink   485 = RS-485 comm   101 = ControlNet   2222 = Ethernet/IP   502 = Modbus/TCP   This parameter is read-only.	


No.	Name/Value	Description	Def/FbEq16
51.02	FBA A Par2	Parameters 51.02...51.26 are adapter module-specific. For more information, see the documentation of the fieldbus adapter module. Note that not all of these parameters are necessarily in use.	-
	0... 65535	Fieldbus adapter configuration parameter.	1 = 1
$\cdots$	$\ldots$	$\ldots$	$\ldots$
51.26	FBA A Par26	See parameter 51.02 FBA A Par2.	-
	0... 65535	Fieldbus adapter configuration parameter.	1 = 1
51.27	FBA A par refresh	Validates any changed fieldbus adapter module configuration settings. After refreshing, the value reverts automatically to Done.   Note: This parameter cannot be changed while the drive is running.	Done
	Done	Refreshing done.	0
	Configure	Refreshing.	1
51.28	FBA A par table ver	Displays the parameter table revision of the fieldbus adapter module mapping file (stored in the memory of the drive).   In format axyz, where ax = major table revision number; $y z=$ minor table revision number.   This parameter is read-only.	-
		Parameter table revision of adapter module.	-
51.29	FBA A drive type code	Displays the drive type code in the fieldbus adapter module mapping file (stored in the memory of the drive). This parameter is read-only.	-
	0... 65535	Drive type code stored in the mapping file.	1 = 1
51.30	FBA A mapping file ver	Displays the fieldbus adapter module mapping file revision stored in the memory of the drive in decimal format. This parameter is read-only.	-
	0... 65535	Mapping file revision.	1 = 1
51.31	D2FBA A comm status	Displays the status of the fieldbus adapter module communication.	Not configured
	Not configured	Adapter is not configured.	0
	Initializing	Adapter is initializing.	1
	Time out	A timeout has occurred in the communication between the adapter and the drive.	2
	Configuration error	Adapter configuration error: mapping file not found in the file system of the drive, or mapping file upload has failed more than three times.	3
	Off-line	Fieldbus communication is off-line.	4
	On-line	Fieldbus communication is on-line, or fieldbus adapter has been configured not to detect a communication break. For more information, see the documentation of the fieldbus adapter.	5
	Reset	Adapter is performing a hardware reset.	6
51.32	FBA A comm SW ver	Displays the common program revision of the adapter module in format axyz, where a = major revision number, $x y=$ minor revision number, $z=$ correction number or letter.   Example: 190A = revision 1.90A.	
		Common program revision of adapter module.	-


No.	Name/Value	Description	Def/FbEq16
51.33	FBAA app/ SW ver	Displays the application program revision of the adapter   module in format axyz, where a = major revision number, $x y=$   minor revision number, $z=$ correction number or letter.   Example: 190A = revision 1.90A.	
		Application program version of adapter module.	-


52 FBA A data in		Selection of data to be transferred from drive to fieldbus controller through fieldbus adapter A.   Note: 32-bit values require two consecutive parameters. Whenever a 32-bit value is selected in a data parameter, the next parameter is automatically reserved.	
52.01	FBA A data in1	Parameters 52.01...52.12 select data to be transferred from the drive to the fieldbus controller through fieldbus adapter A.	None
	None	None.	0
	CW 16bit	Control Word (16 bits)	1
	Ref1 16bit	Reference REF1 (16 bits)	2
	Ref2 16bit	Reference REF2 (16 bits)	3
	SW 16bit	Status Word (16 bits)	4
	Act1 16bit	Actual value ACT1 (16 bits)	5
	Act2 16bit	Actual value ACT2 (16 bits)	6
	Reserved		7... 10
	CW 32bit	Control Word (32 bits)	11
	Ref1 32bit	Reference REF1 (32 bits)	12
	Ref2 32bit	Reference REF2 (32 bits)	13
	SW 32bit	Status Word (32 bits)	14
	Act1 32bit	Actual value ACT1 (32 bits)	15
	Act2 32bit	Actual value ACT2 (32 bits)	16
	Reserved		17... 23
	SW2 16bit	Status Word 2 (16 bits)	24
	Other	Source selection (see Terms and abbreviations on page 196).	-
...	$\ldots$	...	...
52.12	FBA A data in12	See parameter 52.01 FBA A data in1.	None


53 FBA A data out	Selection of data to be transferred from fieldbus controller to   drive through fieldbus adapter A.   Note: 32-bit values require two consecutive parameters.   Whenever a 32-bit value is selected in a data parameter, the   next parameter is automatically reserved.	
53.01 FBA A data out1	Parameters 53.01...53.12 select data to be transferred from   the fieldbus controller to the drive through fieldbus adapter A.	None
None	None.	0
CW 16bit	Control Word (16 bits)	1
Ref1 16bit	Reference REF1 (16 bits)	2
Ref2 16bit	Reference REF2 (16 bits)	3
Reserved		$7 \ldots 10$
CW 32bit	Control Word (32 bits)	11


No.	Name/Value	Description	Def/FbEq16
	Ref1 32bit	Reference REF1 (32 bits)	12
	Ref2 32bit	Reference REF2 (32 bits)	13
	Reserved		$14 \ldots 20$
	CW2 16bit	Control Word 2 (16 bits)	21
	Other	Source selection (see Terms and abbreviations on page 196).	-
$\ldots$	$\ldots$	$\ldots$	$\ldots$
53.12	FBA A data out12	See parameter 53.01 FBA A data out1.	None


58 Embedded fieldbus		Configuration of the embedded fieldbus (EFB) interface. See also chapter Fieldbus control through the embedded fieldbus interface (EFB) (page 505).	
58.01	Protocol enable	Enables/disables the embedded fieldbus interface and selects the protocol to use.	None
	None	None (communication disabled).	0
	Modbus RTU	Embedded fieldbus interface is enabled and uses the Modbus RTU protocol.	1
58.02	Protocol ID	Displays the protocol ID and revision. First 4 bits specify the protocol ID and last 12 bits specify the revision. This parameter is read-only.	-
		Protocol ID and revision.	1 = 1
58.03	Node address	Defines the node address of the drive on the fieldbus link. Values $1 \ldots .247$ are allowable. Also called Station ID, MAC Address or Device Address. Two devices with the same address are not allowed on-line.   Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).	1
	0... 255	Node address (values 1... 247 are allowed).	1 = 1
58.04	Baud rate	Selects the transfer rate of the fieldbus link. When using selection Autodetect, the parity setting of the bus must be known and configured in parameter 58.05 Parity. When parameter 58.04 Baud rate is set to Autodetect, the EFB settings must be refreshed with parameter 58.06. The bus is monitored for a period of time and the detected baud rate is set as the value of this parameter.   Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).	Modbus: 19.2 kbps
	Autodetect	Baud rate detected automatically.	0
	4.8 kbps	$4.8 \mathrm{kbit} / \mathrm{s}$.	1
	9.6 kbps	9.6 kbit/s.	2
	19.2 kbps	19.2 kbit/s.	3
	38.4 kbps	38.4 kbit/s.	4
	57.6 kbps	57.6 kbit/s.	5
	76.8 kbps	76.8 kbit/s.	6
	115.2 kbps	$115.2 \mathrm{kbit} / \mathrm{s}$.	7


No.	Name/Value		Description		Def/FbEq16
58.05	Parity		Selects the type of parity bit and number of stop bits. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).		8 EVEN 1
	8 NONE 1		Eight data bits, no parity bit, one stop bit.		0
	8 NONE 2		Eight data bits, no parity bit, two stop bits.		1
	8 EVEN 1		Eight data bits, even parity bit, one stop bit.		2
	8 ODD 1		Eight data bits, odd parity bit, one stop bit.		3
58.06	Communication control		Takes changed EFB settings in use, or activates silent mode.		Enabled
	Enabled		Normal operation.		0
	Refresh settings		Refreshes settings (parameters $58.01 \ldots 58.05,58.14 \ldots 58.17$, $58.25,58.28 \ldots 58.34$ ) and takes changed EFB configuration settings in use. Reverts automatically to Enabled.		1
	Silent mode		Activates silent mode (no messages are transmitted). Silent mode can be terminated by activating the Refresh settings selection of this parameter.		2
58.07	Communication diagnostics		Displays the status of the EFB communication.   This parameter is read-only.   Note that the name is only visible when the error is present (bit value is 1 ).		-
	Bit ${ }^{\text {Bit }}$ Name			Description	
	0	Init failed		1 = EFB initialization failed	
	1	Addr config err		1 = Node address not allowed by protocol	
	2	Silent mode		1 = Drive not allowed to transmit	
				0 = Drive allowed to transmit	
	3	Autobauding		$1=$ Automatic detection of baud rate is in use (see parameter58.04 )	
	4	Wiring error		1 = Errors detected (A/B wires possibly swapped)	
	5	Parity error		1 = Error detected: check parameters 58.04 and 58.05	
	6	Baud rate error		1 = Error detected: check parameters 58.05 and 58.04	
	7	No bus activity		1 = 0 bytes received during last 5 seconds	
	8	No packets		$1=0$ packets (addressed to any device) detected during last 5 seconds	
	9	Noise or addressing error		1 = Errors detected (interference, or another device with the same address on line)	
	10	Comm loss		$\begin{aligned} & 1=0 \text { packets addressed to the drive received within timeout } \\ & (58.16) \end{aligned}$	
	11	CW/Ref loss		1 = No control word or references received within timeout (58.16)	
	12	Reserved			
	13	Protocol 1		Reserved	
	14	Protocol 2		Reserved	
	15	Internal error		$\begin{aligned} & 1=\text { Internal error occurred. Contact your local ABB } \\ & \text { representative. } \end{aligned}$	
	0000h...FFFFh		EFB communication status.		1 = 1


No.	Name/Value	Description	Def/FbEq16
58.08	Received packets	Displays a count of valid packets addressed to the drive. During normal operation, this number increases constantly. Can be reset from the control panel by keeping Reset down for over 3 seconds.	-
	0...4294967295	Number of received packets addressed to the drive.	$1=1$
58.09	Transmitted packets	Displays a count of valid packets transmitted by the drive. During normal operation, this number increases constantly. Can be reset from the control panel by keeping Reset down for over 3 seconds.	-
	0... 4294967295	Number of transmitted packets.	1 = 1
58.10	All packets	Displays a count of valid packets addressed to any device on the bus. During normal operation, this number increases constantly.   Can be reset from the control panel by keeping Reset down for over 3 seconds.	-
	0...4294967295	Number of all received packets.	$1=1$
58.11	UART errors	Displays a count of character errors received by the drive. An increasing count indicates a configuration problem on the bus.   Can be reset from the control panel by keeping Reset down for over 3 seconds.	-
	0... 4294967295	Number of UART errors.	1 = 1
58.12	CRC errors	Displays a count of packets with a CRC error received by the drive. An increasing count indicates interference on the bus. Can be reset from the control panel by keeping Reset down for over 3 seconds.	-
	0...4294967295	Number of CRC errors.	1 = 1
58.14	Communication loss action	Selects how the drive reacts to an EFB communication break. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).   See also parameters 58.15 Communication loss mode and 58.16 Communication loss time.	No action
	No action	No action taken (monitoring disabled).	0
	Fault	The drive monitors communication loss when start/stop is expected from the EFB on the currently active control location.   The drive trips on 6681 EFB comm loss if control in the currently active control location is expected from the EFB or reference is coming from the EFB, and the communication is lost.	1
	Last speed	Drive generates an A7CE EFB comm loss warning and freezes the speed to the level the drive was operating at. The speed is determined on the basis of actual speed using 850 ms low-pass filtering. This occurs if control or reference is expected from the EFB.   WARNING! Make sure that it is safe to continue operation in case of a communication break.	2


No.	Name/Value	Description	Def/FbEq16
	Speed ref safe	Drive generates an $A 7 C E$ EFB comm loss warning and sets the speed to the speed defined by parameter 22.41 Speed ref safe (or 28.41 Frequency ref safe when frequency reference is being used). This occurs if control or reference is expected from the EFB.   WARNING! Make sure that it is safe to continue operation in case of a communication break.	3
	Fault always	Drive continuously monitors for communication loss. Drive trips on 6681 EFB comm loss. This happens even though the drive is in a control location where the EFB start/stop or reference is not used.	4
	Warning	Drive generates an A7CE EFB comm loss warning. This occurs even though no control is expected from the EFB. $\qquad$ WARNING! Make sure that it is safe to continue operation in case of a communication break.	5
58.15	Communication loss mode	Defines which message types reset the timeout counter for detecting an EFB communication loss.   Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).   See also parameters 58.14 Communication loss action and 58.16 Communication loss time.	$\begin{aligned} & \text { Cw / Ref1 / } \\ & \text { Ref2 } \end{aligned}$
	Any message	Any message addressed to the drive resets the timeout.	1
	Cw / Ref1 / Ref2	A write of the control word or a reference resets the timeout.	2
58.16	Communication loss time	Sets a timeout for EFB communication. If a communication break lasts longer than the timeout, the action specified by parameter 58.14 Communication loss action is taken. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).   See also parameter 58.15 Communication loss mode. Note: There is a 30 -second boot-up delay immediately after power-up.	30.0 s
	0.0...6000.0 s	EFB communication timeout.	1 = 1
58.17	Transmit delay	Defines a minimum response delay in addition to any fixed delay imposed by the protocol.   Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).	0 ms
	$0 . .65535 \mathrm{~ms}$	Minimum response delay.	$1=1$
58.18	EFB control word	Displays the raw (unmodified) control word sent by the Modbus controller to the drive. For debugging purposes. This parameter is read-only.	-
	00000000h...   FFFFFFFFh	Control word sent by Modbus controller to the drive.	1 = 1
58.19	EFB status word	Displays the raw (unmodified) status word for debugging purposes.   This parameter is read-only.	-
	$\begin{aligned} & \hline 00000000 \mathrm{~h} . . . \\ & \text { FFFFFFFFh } \end{aligned}$	Status word sent by the drive to the Modbus controller.	1 = 1


No.	Name/Value	Description		Def/FbEq16
58.25	Control profile	Defines the communication profile used by the Modbus protocol.   Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).   See section About the control profiles on page 514.		ABB Drives
	ABB Drives	ABB Drives control profile (with a 16-bit control word)		0
	DCU Profile	DCU control profile (with a 16 or 32-bit control word)		5
58.26	EFB ref1 type	Selects the type and scaling of reference 1 received through the embedded fieldbus interface.   The scaled reference is displayed by 03.09 EFB reference 1 .		Speed or frequency
Speed or frequency		Type and scaling is chosen automatically according to the currently active operation mode as follows.		0
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Operation mode } \\ \text { (see par. 19.01) } \end{array} \\ \hline \end{array}$	Reference 1 type	
		Speed control	Speed	
		Torque control	Speed	
		Frequency control	Frequency	
	Transparent	No scaling is applied.		1
	General	Generic reference without a specific unit. Scaling: $1=100$.		2
	Torque	Torque reference. The scaling is defined by parameter 46.03 Torque scaling.		3
	Speed	Speed reference. The scaling is defined by parameter 46.01 Speed scaling.		4
	Frequency	Frequency reference. The scaling is defined by parameter 46.02 Frequency scaling.		5
58.27	EFB ref2 type	Selects the type and scaling of reference 2 received through the embedded fieldbus interface.   The scaled reference is displayed by 03.10 EFB reference 2 .		Torque
58.28	EFB act1 type	Selects the type of actual value 1 .		Speed or frequency
	Speed or frequency	Type and scaling is chosen automatically according to the currently active operation mode as follows.		0
		Operation mode (see par. 19.01)	Actual 1 type	
		Speed control	Speed	
		Torque control	Speed	
		Frequency control	Frequency	
	Transparent	No scaling is applied.		1
	General	Generic reference without a specific unit. Scaling: $1=100$.		2
	Torque	Scaling is defined by parameter 46.03 Torque scaling.		3
	Speed	Scaling is defined by parameter 46.01 Speed scaling.		4
	Frequency	Scaling is defined by parameter 46.02 Frequency scaling.		5
58.29	EFB act2 type	Selects the type of actual value 2.   For the selections, see parameter 58.28 EFB act1 type.		Transparent

$\qquad$

No.	Name/Value	Description	Def/FbEq16
58.31	EFB act1 transparent source	Selects the source of actual value 1 when parameter 58.28 EFB act1 type is set to Transparent.	Not selected
	Not selected	None.	0
	Other	Source selection (see Terms and abbreviations on page 196).	-
58.32	EFB act2 transparent source	Selects the source of actual value 2 when parameter 58.29 EFB act2 type is set to Transparent.	Not selected
	Not selected	None.	0
	Other	Source selection (see Terms and abbreviations on page 196).	-
58.33	Addressing mode	Defines the mapping between parameters and holding registers in the 400101... 465535 Modbus register range. Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).	Mode 0
	Mode 0	16-bit values (groups 1...99, indexes 1...99):   Register address $=400000+100 \times$ parameter group + parameter index. For example, parameter 22.80 would be mapped to register $400000+2200+80=402280$.   32 -bit values (groups 1...99, indexes 1...99):   Register address $=420000+200 \times$ parameter group +   $2 \times$ parameter index. For example, parameter 22.80 would be mapped to register $420000+4400+160=424560$.	0
	Mode 1	16-bit values (groups 1...255, indexes 1...255):   Register address $=400000+256 \times$ parameter group + parameter index. For example, parameter 22.80 would be mapped to register $400000+5632+80=405712$.	1
	Mode 2	32-bit values (groups 1...127, indexes 1...255):   Register address $=400000+512 \times$ parameter group + $2 \times$ parameter index. For example, parameter 22.80 would be mapped to register $400000+11264+160=411424$.	2
58.34	Word order	Selects in which order 16-bit registers of 32-bit parameters are transferred.   For each register, the first byte contains the high order byte and the second byte contains the low order byte.   Changes to this parameter take effect after the control unit is rebooted or the new settings validated by parameter 58.06 Communication control (Refresh settings).	LO-HI
	HI-LO	The first register contains the high order word, the second contains the low order word.	0
	LO-HI	The first register contains the low order word, the second contains the high order word.	1
58.101	Data I/O 1	Defines the address in the drive which the Modbus master accesses when it reads from or writes to the register address corresponding to Modbus register 1 (400001).   The master defines the type of the data (input or output). The value is transmitted in a Modbus frame consisting of two 16bit words. If the value is 16-bit, it is transmitted in the LSW (least significant word). If the value is 32 -bit, the subsequent parameter is also reserved for it and must be set to None.	CW 16bit
	None	No mapping, register is always zero.	0
	CW 16bit	ABB Drives profile: 16-bit ABB drives control word; $D C U$ Profile: lower 16 bits of the DCU control word	1
	Ref1 16bit	Reference REF1 (16 bits)	2


No.	Name/Value	Description	Def/FbEq16
	Ref2 16bit	Reference REF2 (16 bits)	3
	SW 16bit	$A B B$ Drives profile: 16-bit ABB drives status word; $D C U$ Profile: lower 16 bits of the DCU status word	4
	Act1 16bit	Actual value ACT1 (16 bits)	5
	Act2 16bit	Actual value ACT2 (16 bits)	6
	Reserved		7... 10
	CW 32bit	Control Word (32 bits)	11
	Ref1 32bit	Reference REF1 (32 bits)	12
	Ref2 32bit	Reference REF2 (32 bits)	13
	SW 32bit	Status Word (32 bits)	14
	Act1 32bit	Actual value ACT1 (32 bits)	15
	Act2 32bit	Actual value ACT2 (32 bits)	16
	Reserved		17... 20
	CW2 16bit	$A B B$ Drives profile: not used; $D C U$ Profile: upper 16 bits of the DCU control word	21
	SW2 16bit	$A B B$ Drives profile: not used / always zero; $D C U$ Profile: upper 16 bits of the DCU status word	24
	Reserved		25... 30
	RO/DIO control word	Parameter 10.99 RO/DIO control word.	31
	AO1 data storage	Parameter 13.91 AO1 data storage.	32
	AO2 data storage	Parameter 13.92 AO2 data storage.	33
	Reserved		34... 39
	Feedback data storage	Parameter 40.91 Feedback data storage.	40
	Setpoint data storage	Parameter 40.92 Setpoint data storage.	41
	Other	Source selection (see Terms and abbreviations on page 196).	-
58.102	Data I/O 2	Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400002.   For the selections, see parameter 58.101 Data I/O 1.	Ref1 16bit
58.103	Data I/O 3	Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400003.   For the selections, see parameter 58.101 Data I/O 1.	Ref2 16bit
58.104	Data I/O 4	Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400004.   For the selections, see parameter 58.101 Data I/O 1.	SW 16bit
58.105	Data I/O 5	Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400005.   For the selections, see parameter 58.101 Data I/O 1.	Act1 16bit
58.106	Data I/O 6	Defines the address in the drive which the Modbus master accesses when it reads from or writes to register address 400006.   For the selections, see parameter 58.101 Data I/O 1.	Act2 16bit


No.	Name/Value	Description	Def/FbEq16
58.107	Data I/O 7	Parameter selector for Modbus register address 400007.   For the selections, see parameter 58.101 Data I/O 1.	None
$\ldots$	$\ldots$	$\ldots$	$\ldots$
58.114	Data I/O 14	Parameter selector for Modbus register address 400014.   For the selections, see parameter 58.101 Data I/O 1.	None


71 External PID1			Configuration of external PID.   See the control chain diagrams on pages 565 and 566.		
71.01	External PID act value		See parameter 40.01 Process PID output actual.		-
71.02	Feedback act value		See parameter 40.02 Process PID feedback actual.		-
71.03	Setpoint act value		See parameter 40.03 Process PID setpoint actual.		-
71.04	Deviation act value		See parameter 40.04 Process PID deviation actual.		-
71.06	PID status word		Displays status information on process external PID control. This parameter is read-only.		-
	Bit   0   1   2	Name		Value	
		PID active		1 = Process PID control active.	
		Reserved			
		Output frozen		1 = Process PID controller output frozen. Bit is set if parameter 71.38 Output freeze enable is TRUE, or the deadband function is active (bit 9 is set).	
	3... 6	Reserved			
	7	Output limit high		1 = PID output is being limited by par. 71.37.	
	8	Output limit low		1 = PID output is being limited by par. 71.36.	
	9	Deadband active		1 = Deadband is active (see par. 71.39)	
	10... 11	Reserved			
	$12$	Internal setpoint active		1 = Internal setpoint active (see par. 71.16...71.23)	
	13... 15	Reserved			
	0000h...FFFFh		Process PID control status word.		1 = 1
71.07	PID operation mode		See parameter 40.07 Process PID operation mode.		Off
71.08	Feedback 1 source		See parameter 40.08 Set 1 feedback 1 source.		Al2 percent
71.11	Feedback filter time		See parameter 40.11 Set 1 feedback filter time.		0.000 s
71.14	Setpoint scaling		Defines, together with parameter 71.15 Output scaling, a general scaling factor for the external PID control chain. The scaling can be utilized when, for example, the process setpoint is input in Hz , and the output of the PID controller is used as an rpm value in speed control. In this case, this parameter might be set to 50 , and parameter 71.15 to the nominal motor speed at 50 Hz .   In effect, the output of the PID controller [71.15] when deviation (setpoint - feedback) $=[71.14]$ and [71.32] $=1$.   Note: The scaling is based on the ratio between 71.14 and 71.15. For example, the values 50 and 1500 would produce the same scaling as 1 and 3 .		1500.00
	$\begin{aligned} & \hline-200000.00 \ldots \\ & 200000.00 \end{aligned}$		Process setpoint base.		$1=1$
71.15	Output scaling		See	rameter 71.14 Setpoint scaling.	1500.00


No.	Name/Value	Description	Def/FbEq16
	$\begin{aligned} & -200000.00 \ldots \\ & 200000.00 \end{aligned}$	Process PID controller output base.	1 = 1
71.16	Setpoint 1 source	See parameter 40.16 Set 1 setpoint 1 source.	Al2 percent
71.19	Internal setpoint sel1	See parameter 40.19 Set 1 internal setpoint sel1.	Not selected
71.20	Internal setpoint sel2	See parameter 40.20 Set 1 internal setpoint sel2.	Not selected
71.21	Internal setpoint 1	See parameter 40.21 Set 1 internal setpoint 1.	0.00 PID customer units
71.22	Internal setpoint 2	See parameter 40.22 Set 1 internal setpoint 2.	0.00 PID customer units
71.23	Internal setpoint 3	See parameter 40.23 Set 1 internal setpoint 3.	0.00 PID customer units
71.26	Setpoint min	See parameter 40.26 Set 1 setpoint min.	0.00 PID customer units
71.27	Setpoint max	See parameter 40.27 Set 1 setpoint max.	200000.00 PID customer units
71.31	Deviation inversion	See parameter 40.31 Set 1 deviation inversion.	Not inverted (Ref - Fbk)
71.32	Gain	See parameter 40.32 Set 1 gain.	1.00
71.33	Integration time	See parameter 40.33 Set 1 integration time.	60.0 s
71.34	Derivation time	See parameter 40.34 Set 1 derivation time.	0.000 s
71.35	Derivation filter time	See parameter 40.35 Set 1 derivation filter time.	0.0 s
71.36	Output min	See parameter 40.36 Set 1 output min.	-200000.00
71.37	Output max	See parameter 40.37 Set 1 output max.	200000.00
71.38	Output freeze enable	See parameter 40.38 Set 1 output freeze enable.	Not selected
71.39	Deadband range	The control program compares the absolute value of parameter 71.04 Deviation act value to the deadband range defined by this parameter. If the absolute value is within the deadband range for the time period defined by parameter 71.40 Deadband delay, PID's deadband mode is activated and 71.06 PID status word bit 9 Deadband active is set. Then PID's output is frozen and 71.06 PID status word bit 2 Output frozen is set.   If the absolute value is equal or greater than the deadband range, PID's deadband mode is deactivated.	0.0
	0.0...200000.0 PID customer units	Range	$1 \text { = } 1 \text { PID }$   customer unit
71.40	Deadband delay	Defines the deadband delay for the deadband function. See parameter 71.39 Deadband range.	0.0 s
	0.0...3600.0 s	Delay	$1=1 \mathrm{~s}$
71.58	Increase prevention	See parameter 40.58 Set 1 increase prevention.	No
	No	Increase prevention not in use.	0


No.	Name/Value	Description	Def/FbEq16
	Limiting	The PID integration term is not increased if the maximum value for the PID output is reached. This parameter is valid for the PID set 1.	1
	Process PID min lim	The process PID integration term is not increased when the output of the external PID has reached its minimum limit. In this setup, the external PID is used as a source for the process PID.	2
	Process PID max lim	The process PID integration term is not increased when the output of the external PID has reached its maximum limit. In this setup, the external PID is used as a source for the process PID.	3
	Other	Source selection (see Terms and abbreviations on page 196).	-
71.59	Decrease prevention	See parameter 40.59 Set 1 decrease prevention.	No
	No	Decrease prevention not in use.	0
	Limiting	The PID integration term is not decreased if the maximum value for the PID output is reached. This parameter is valid for the PID set 1 .	1
	Process PID min lim	The process PID integration term is not decreased when the output of the external PID has reached its minimum limit. In this setup, the external PID is used as a source for the process PID.	2
	Process PID max lim	The process PID integration term is not decreased when the output of the external PID has reached its maximum limit. In this setup, the external PID is used as a source for the process PID.	3
	Other	Source selection (see Terms and abbreviations on page 196).	-
71.62	Internal setpoint actual	See parameter 40.62 PID internal setpoint actual.	-
71.79	External PID units	Unit used for external PID.	\%
		For selections, see parameter 40.79 Set 1 units.	


No.	Name/Value	Description	Def/FbEq16
76 PFC configuration		PFC (Pump and fan control) and Autochange configuration parameters. See also section Pump and fan control (PFC) on page 142.	
76.01	PFC status	Displays the running/stopped status of the PFC motors. PFC1, PFC2, PFC3, PFC4, PFC5 and PFC6 always correspond to the 1st...6th motor of the PFC system. If 76.74 Autochange auxiliary PFC auxiliary PFC is set to Aux motors only, PFC1 represents the motor connected to the drive and PFC2 the first auxiliary motor (the 2nd motor of the system). If 76.74 is set to All motors, PFC1 is the first motor, PFC2 the 2 nd . The drive can be connected to any of these motors depending on the Autochange functionality.	-
	Name	Value	
	PFC 1 running	ing $\quad 0=$ Stop, $1=$ Start	
	PFC 2 running	ing $0=$ Stop, $1=$ Start	
	PFC 3 running	ing $\quad 0=$ Stop, $1=$ Start	
	PFC 4 running	ing $\quad 0=$ Stop, $1=$ Start	
	PFC 5 running	ing $\quad 0=$ Stop, $1=$ Start	
	PFC 6 running	ing $\quad 0=$ Stop, $1=$ Start	
	Reserved		
	0000h...FFFFh	Status of the PFC relay outputs.	1 = 1
76.02	Multipump system status	Displays the status of the PFC system in text form. Provides a quick PFC system overview, for example, if the parameter is added to the Home view on the control panel.	PFC disabled
	PFC disabled	PFC (Pump and fan control) is disabled.	0
	PFC enabled (not started)	PFC is enabled but not started.	1
	SPFC enabled (not started)	SPFC (Soft pump and fan control) is enabled but not started.	2
	Running with VSD	The drive is controlling one pump/fan motor, no auxiliary motors are used.	100
	Running with VSD   +1 Aux	One auxiliary motor has been taken in use.	101
	Running with VSD +2 Aux	Two auxiliary motor have been taken in use.	102
	$\begin{aligned} & \text { Running with VSD } \\ & +3 \text { Aux } \end{aligned}$	Three auxiliary motor have been taken in use.	103
	$\begin{aligned} & \text { Running with VSD } \\ & +4 \text { Aux } \\ & \hline \end{aligned}$	Four auxiliary motor have been taken in use.	104
	$\begin{aligned} & \text { Running with VSD } \\ & +5 \text { Aux } \\ & \hline \end{aligned}$	Five auxiliary motor have been taken in use.	105
	Starting Aux1	Auxiliary motor 1 is being started.	200
	Starting Aux2	Auxiliary motor 2 is being started.	201
	Starting Aux3	Auxiliary motor 3 is being started.	202
	Starting Aux4	Auxiliary motor 4 is being started.	203
	Starting Aux5	Auxiliary motor 5 is being started.	204
	Stopping Aux1	Auxiliary motor 1 is being stopped.	300


No.	Name/Value	Description	Def/FbEq16
	Stopping Aux2	Auxiliary motor 2 is being stopped.	301
	Stopping Aux3	Auxiliary motor 3 is being stopped.	302
	Stopping Aux4	Auxiliary motor 4 is being stopped.	303
	Stopping Aux5	Auxiliary motor 5 is being stopped.	304
	Autochange active	Autochange, that is, automatic rotation of the start order is active.	400
	No auxiliary motors available to be started	No auxiliary motors are available to be started, for example, all are already running, or a motor in not available due to maintenance.	500
	Regulator bypass active	Direct-on-line pumps are automatically started and stopped.	600
	PID sleep	PID sleep is in use, and the pump can be stopped in during low demand.	800
	PID sleep boost	PID sleep with extended sleep time is in use, and the pump can be stopped in during low demand.	801
	Invalid configuration	PFC configuration is invalid.	4
	PFC inactive (local control)	PFC is inactive because the drive is in local control.	5
	PFC inactive (invalid operation mode)	PFC is inactive because of an invalid operation mode.	6
	Drive motor interlocked	The motor connected to the drive is interlocked (not available). Warning D503 VSD controlled PFC motor interlocked (page 492) is generated.	7
	All motors interlocked	All motors are interlocked (not available). Warning D502 All motors interlocked (page 492) is generated.	8
	PFC inactive (ext1 active)	PFC is inactive because external control location EXT1 is in use. PFC is supported in EXT2 only.	9
76.11	Pump/fan status 1	Shows the status of pump or fan 1.	-


Bit	Name	Value	
0	Ready	$0=$ False, $1=$ True	
1	Reserved		
2	Running	$0=$ False, $1=$ True	
$3 \ldots 4$	Reserved	$0=$ False, $1=$ True	
5	In PFC control	0	
$6 \ldots .10$	Reserved	0 False, $1=$ True	
11	Interlocked		
$12 \ldots 15$	Reserved		


	0000h...FFFFh	Status of pump or fan 1.	$1=1$
76.12	Pump/fan status 2	See parameter 76.11 Pump/fan status 1.	-
76.13	Pump/fan status 3	See parameter 76.11 Pump/fan status 1.	-
76.14	Pump/fan status 4	See parameter 76.11 Pump/fan status 1.	-
76.15	Pump/fan status 5	See parameter 76.11 Pump/fan status 1.	-
76.16	Pump/fan status 6	See parameter 76.11 Pump/fan status 1.	-


No.	Name/Value	Description	Def/FbEq16
76.21	Multipump configuration	Selects the multipump/fan control (PFC) mode.	Off
	Off	PFC disabled.	0
	Reserved		1
	PFC	PFC enabled. One pump at a time is controlled by the drive. The remaining pumps are direct-on-line pumps that are started and stopped by the drive logic The frequency (group 28 Frequency reference chain) / speed (group 22 Speed reference selection) reference must be defined as PID for the PFC functionality to work properly.	2
	SPFC	SPFC enabled. See section Soft pump and fan control (SPFC) on page 143.	3
76.25	Number of motors	Total number of motors used in the application, including the motor connected directly to the drive.	1
	1... 6	Number of motors.	1 = 1
76.26	Min number of motors allowed	Minimum number of motors running simultaneously.	1
	0... 6	Minimum number of motors.	1 = 1
76.27	Max number of motors allowed	Maximum number of motors running simultaneously.	1
	1... 6	Maximum number of motors.	1 = 1



No.	Name/Value	Description	Def/FbEq16
76.34	Start point 5	Defines the start speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the fifth auxiliary motor. See parameter 76.31 Start point 1.	Vector:   1300 rpm;   Scalar 48 Hz ;   58 Hz   (95.20 b0)
76.41	Stop point 1	Defines the stop speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the first auxiliary motor. When the speed (defined by the PID output value) of the motor connected directly to the drive falls below this value and one auxiliary motor is running, the stop delay defined by parameter 76.56 Stop delay is started. If the speed is still at the same level or lower when the stop delay elapses, the first auxiliary motor stops.   The running speed of the drive is increased by [Start point 1 Stop point 1] after the auxiliary motor stops.	Vector:   800 rpm;   Scalar 25 Hz ;   30 Hz   (95.20 b0)
	0... $32767 \mathrm{rpm} / \mathrm{Hz}$	Speed/frequency	1 = 1 unit
76.42	Stop point 2	Defines the stop speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the second auxiliary motor. See parameter 76.31 Stop point 1.	Vector:   800 rpm;   Scalar 25 Hz ;   30 Hz   (95.20 b0)
76.43	Stop point 3	Defines the stop speed ( $\mathrm{Hz} / \mathrm{rpm}$ ) for the third auxiliary motor. See parameter 76.31 Stop point 1 .	Vector:   800 rpm;   Scalar 25 Hz ;   30 Hz   (95.20 b0)
76.44	Stop point 4	Defines the stop speed (Hz/rpm) for the fourth auxiliary motor. See parameter 76.31 Stop point 1 .	Vector:   800 rpm;   Scalar 25 Hz ;   30 Hz   (95.20 b0)
76.45	Stop point 5	Defines the stop speed (Hz/rpm) for the fifth auxiliary motor. See parameter 76.31 Stop point 1 .	Vector:   800 rpm;   Scalar 25 Hz ;   30 Hz   (95.20 b0)
76.55	Start delay	Defines a start delay for auxiliary motors. See parameter 76.31 Start point 1.	10.00 s
	0.00...12600.00 s	Time delay.	$1=1 \mathrm{~s}$
76.56	Stop delay	Defines a stop delay for auxiliary motors. See parameter 76.31 Stop point 1.	10.00 s
	0.00...12600.00 s	Time delay.	$1=1 \mathrm{~s}$
76.57	PFC speed hold on	Hold time for auxiliary motor switch-on. See parameter 76.31 Start point 1.	0.00 s
	0.00...1000.00 s	Time.	$1=1 \mathrm{~s}$
76.58	PFC speed hold off	Hold time for auxiliary motor switch-off. See parameter 76.31 Stop point 1.	0.00 s
	0.00...1000.00 s	Time.	$1=1 \mathrm{~s}$


No.	Name/Value	Description	Def/FbEq16
76.59	PFC contactor delay	Start delay for the motor that is directly controlled by the drive. This does not affect the starting of the auxiliary motors.   WARNING! There must always be a delay set if the motors are equipped with star-delta starters. The delay must be set longer than the time setting of the starter. After the motor is switched on by the relay output of the drive, there must be enough time for the star-delta starter to first switch to star and then back to delta before the motor is connected to the drive.	0.50 s
	0.20...600.00 s	Time delay.	$1=1 \mathrm{~s}$
76.60	PFC ramp acceleration time	Defines the acceleration time for the drive motor speed compensation, when an auxiliary motor is stopped. This ramp time is also used for the drive motor to accelerate after an autochange has occurred.   Defines the acceleration time if the latest reference received by the drive is higher than the previous reference. This parameter is used also to accelerate the pump when the auxiliary pump is started.   The parameter sets the ramp-up time as seconds from zero to maximum frequency (not from the previous reference to the new reference).	1.00 s
	0.00...1800.00 s	Time.	$1=1 \mathrm{~s}$
76.61	PFC ramp deceleration time	Defines the deceleration time for the drive motor speed compensation, when an auxiliary motor is started. This ramp time is also used for the drive motor to decelerate after an autochange has occurred.   Defines the deceleration time if the latest reference received by the drive is lower than the previous reference. This parameter is used also to decelerate the pump when the auxiliary pump is stopped.   The parameter sets the ramp-down time as seconds from maximum to zero frequency (not from the previous reference to the new reference).	1.00 s
	0.00... 1800.00 s	Time.	$1=1 \mathrm{~s}$
76.70	PFC autochange	Defines the way the autochange is triggered. In all cases except Even wear, the start order is moved one step forward each time the autochange occurs. If the start order initially is 1-2-3-4, after the first autochange the order will be 2-3-4-1, etc.   For Even wear, the start order will be determined so that the running times of all motors remain within the defined limit.   Note: Autochange only occurs when the speed of the drive is below the speed defined by parameter 76.73 Autochange level.   See also section Autochange on page 145.	Not selected
	Not selected	Autochange disabled.	0
	Selected	Rising edge starts the autochange if autochange conditions are met.	1
	DI1	Autochange triggered by the rising edge of digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Autochange triggered by the rising edge of digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Autochange triggered by the rising edge of digital input DI3 (10.02 DI delayed status, bit 2).	4


No.	Name/Value	Description	Def/FbEq16
	DI4	Autochange triggered by the rising edge of digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Autochange triggered by the rising edge of digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Autochange triggered by the rising edge of digital input DI6 (10.02 DI delayed status, bit 5).	7
	Timed function 1	Autochange triggered by timed function 1 (bit 0 of 34.01 Timed functions status (see page 327)).	8
	Timed function 2	Autochange triggered by timed function 2 (bit 1 of 34.01 Timed functions status (see page 327)).	9
	Timed function 3	Autochange triggered by timed function 3 (bit 2 of 34.01 Timed functions status (see page 327)).	10
	Fixed interval	Autochange is done when the interval determined in the parameter 76.71 PFC autochange interval has elapsed.	11
	All stop	Autochange is done when all the motors are stopped. The PID sleep feature (parameters 40.43 Set 1 sleep level ... 40.48 Set 1 wake-up delay) must be used for the drive to stop when the process demand is low.	12
	Even wear	The running time of the motors are balanced by the drive. When the difference in running time between the motors with the least and most running hours exceeds the time defined by parameter 76.72 Maximum wear imbalance, the autochange occurs.   The running hours of the motors can be found in group 77 PFC maintenance and monitoring.	13
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
76.71	PFC autochange interval	Specifies the interval that is used in setting Fixed interval of parameter 76.70 PFC autochange.	1.00 h
	$\begin{aligned} & 0.00 \ldots 42949672.95 \\ & \mathrm{~h} \end{aligned}$	Time.	1 = 1 h
76.72	Maximum wear imbalance	Specifies the maximum wear imbalance, or difference in running times between any motor, used by the Even wear setting of parameter 76.70 PFC autochange.	10.00 h
	$\begin{aligned} & 0.00 \ldots 1000000.00 \\ & \mathrm{~h} \end{aligned}$	Time.	$1=1 \mathrm{~h}$
76.73	Autochange level	Upper speed limit for the Autochange to occur. The Autochange occurs when:   - the condition defined in 76.70 PFC autochange is fulfilled and,   - the speed of the drive motor 01.03 Motor speed $\%$ is below the speed limit defined in this parameter.   Note: When the value is selected as $0 \%$, this speed limit check is disabled.	100.0\%
	0.0...300.0\%	Speed/frequency in percentage of the nominal speed or frequency of the drive motor.	1 = 1\%
76.74	Autochange auxiliary PFC	Selects whether only auxiliary motors or all motors are included in the Autochange function.	Aux motors only


No.	Name/Value	Description
	All motors	All motors, including the one connected to the drive   participates in the autochange. The Autochange logic will   connect the drive to each of the motors according to setting of   parameter 76.70 PFC autochange.   Note: The first motor (PFC1) also requires the appropriate   hardware contactor connections and PFC1 must be defined   in one of the relay output source parameters.


No.	Name/Value	Description	Def/FbEq16
	Enable	Digital input DI3 (10.02 DI delayed status, bit 2).	1
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-


77 PFC maintenance and monitoring		PFC (Pump and fan control) maintenance and monitoring parameters.	
77.10	PFC runtime change	Enables the reset, or arbitrary setting, of 77.11 Pump/fan 1 running time ... 77.14 Pump/fan 4 running time.	Done
	Done	The parameter automatically reverts back to this value.	0
	Set any PFC run time	Enables the setting of 77.11 Pump/fan 1 running time ... 77.14 Pump/fan 4 running time to an arbitrary value.	1
	Reset PFC1 run time	Resets parameter 77.11 Pump/fan 1 running time.	2
	Reset PFC2 run time	Resets parameter 77.12 Pump/fan 2 running time.	3
	Reset PFC3 run time	Resets parameter 77.13 Pump/fan 3 running time.	4
	Reset PFC4 run time	Resets parameter 77.14 Pump/fan 4 running time.	5
	Reset PFC5 run time	Resets parameter 77.15 Pump/fan 5 running time.	6
	Reset PFC6 run time	Resets parameter 77.16 Pump/fan 6 running time.	7
77.11	Pump/fan 1 running time	Running time counter of pump/fan 1. Can be set or reset by parameter 77.10 Pump/fan 1 running time.	0.00 h
	$\begin{aligned} & 0.00 \ldots \\ & 42949672.95 \mathrm{~h} \end{aligned}$	Time	1 = 1 h
77.12	Pump/fan 2 running time	See parameter 77.11 Pump/fan 1 running time.	0.00 h
77.13	Pump/fan 3 running time	See parameter 77.11 Pump/fan 1 running time.	0.00 h
77.14	Pump/fan 4 running time	See parameter 77.11 Pump/fan 1 running time.	0.00 h
77.15	Pump/fan 5 running time	See parameter 77.11 Pump/fan 1 running time.	0.00 h
77.16	Pump/fan 6 running time	See parameter 77.11 Pump/fan 1 running time.	0.00 h


No.	Name/Value	Description	Def/FbEq16
95 HW configuration		Various hardware-related settings.	
95.01	Supply voltage	Selects the supply voltage range. This parameter is used by the drive to determine the nominal voltage of the supply network. The parameter also affects the current ratings and the DC voltage control functions (trip and brake chopper activation limits) of the drive. $\qquad$ WARNING! An incorrect setting may cause the motor to rush uncontrollably, or the brake chopper or resistor to overload.   Note: The selections shown depend on the hardware of the drive. If only one voltage range is valid for the drive in question, it is selected by default.	Automatic / not selected
	Automatic / not selected	No voltage range selected. The drive will not start modulating before a range is selected, unless parameter 95.02 Adaptive voltage limits is set to Enable, in which case the drive estimates the supply voltage itself.	0
	208... 240 V	208... 240 V	1
	$380 . . .415 \mathrm{~V}$	$380 \ldots 415 \mathrm{~V}$	2
	$440 . .480 \mathrm{~V}$	$440 . .480 \mathrm{~V}$	3
	$525 . . .600 \mathrm{~V}$	$525 . .600 \mathrm{~V}$	5
95.02	Adaptive voltage limits	Enables adaptive voltage limits.   Adaptive voltage limits can be used if, for example, an IGBT supply unit is used to raise the DC voltage level. If the communication between the inverter and IGBT supply unit is active, the voltage limits are related to the DC voltage reference from the IGBT supply unit. Otherwise the limits are calculated based on the measured DC voltage at the end of the pre-charging sequence.   This function is also useful if the AC supply voltage to the drive is high, as the warning levels are raised accordingly.	Enable
	Disable	Adaptive voltage limits disabled.	0
	Enable	Adaptive voltage limits enabled.	1
95.03	Estimated AC supply voltage	AC supply voltage estimated by calculation. Estimation is done every time the drive is powered up and is based on the rise speed of voltage level of the DC bus while the drive charges the DC bus.	-
	$0 . . .65535$ V	Voltage.	$10=1 \mathrm{~V}$
95.04	Control board supply	Specifies how the control unit of the drive is powered.	Internal 24V
	Internal 24V	The drive control unit is powered from the drive power unit it is connected to.	0
	External 24V	The drive control unit is powered from an external power supply.	1


No.	Name/Value		Description		Def/FbEq16
95.15	Special HW settings		Contains hardware-related settings that can be enabled and disabled by toggling the specific bits.   Notes:   - The installation of the hardware specified by this parameter may require derating of drive output, or impose other limitations. Refer to the Hardware manual of the drive.   - With the CPTC-02 ATEX-certified thermistor protection module, follow the instructions given in the CPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (+L537+Q971) user's manual (3AXD50000030058 [English].		0000h
	Bit ${ }^{\text {B }}$	Name ${ }^{\text {a }}$ \| Information			
	0 E	EX motor		1 = The driven motor is an Ex motor provided by ABB for potentially explosive atmospheres. This sets the required minimum switching frequency for ABB Ex motors.   Notes:   - For non-ABB Ex motors, use parameters 97.01 and 97.02 to define the correct minimum switching frequency.   - If you have a multimotor system, contact your local ABB representative.	
		ABB Sine filter		1 = An ABB sine filter is connected to the output of the drive.	
	2...15 R	Reserved			
	00000000h...   FFFFFFFFh		Hardware options configuration word.		$1=1$
95.20	HW options word 1		Specifies hardware-related options that require differentiated parameter defaults.   This parameter is not affected by a parameter restore.		$\begin{aligned} & \hline 0000 \text { 0000 } \\ & 0000 \text { 0000b } \end{aligned}$
	Bit ${ }^{\text {B }}$	Name		Value	
		Supply frequency 60 Hz		See section Differences in the default values between 50 Hz and 60 Hz supply frequency settings on page 437.$\begin{aligned} & 0=50 \mathrm{~Hz} . \\ & 1=60 \mathrm{~Hz} . \end{aligned}$	
	1...12 R	Reserved			
	$13$	du/dt filter activation		When active, an external du/dt filter is connected to the drive/inverter output. The setting will limit the output switching frequency, and force the fan of the drive/inverter module to full speed.   $0=\mathrm{du} / \mathrm{dt}$ filter inactive.   $1=$ du/dt filter active.	
	$14 . .15$ Reserved				
	0000h...FF	FFFh	Hardw	are options configuration word.	1 = 1




No.	Name/Value	Description   The drives include the language package corresponding to the order's geographical location. No plus code or other actions are needed.   Examples:   - If the order is placed in Sweden, the drives will be delivered with the Global package (default package).   - If the order is placed in Poland, the drives will be updated with European package before the delivery.   - If the order is placed in Japan, the drives will be updated with Asian package before the delivery.   All the language package variants are available from your local drives support.   Notes:   - Not all languages listed below are necessarily supported.   - This parameter does not affect the languages visible in the Drive composer PC tool. (Those are specified under View > Settings > Drive default language.)	Def/FbEq16
	Not selected	None.	0
	English	English.	1033
	Deutsch	German.	1031
	Italiano	Italian.	1040
	Español	Spanish.	3082
	Portugues	Portuguese.	2070
	Nederlands	Dutch.	1043
	Français	French.	1036
	Dansk	Danish.	1030
	Suomi	Finnish.	1035
	Svenska	Swedish.	1053
	Russki	Russian.	1049
	Polski	Polish.	1045
	Ceský	Czech.	1029
	Magyar	Hungarian.	1038
	Chinese(Simplified, PRC)	Simplified Chinese.	2052
	Türkçe	Turkish.	1055


No.	Name/Value	Description	Def/FbEq16
96.02	Pass code	Pass codes can be entered into this parameter to activate further access levels (see parameter 96.03 Access level status) or to configure the user lock.   Entering " 358 " toggles the parameter lock, which prevents the changing of all other parameters through the control panel or the Drive composer PC tool.   Entering the user pass code (by default, "10000000") enables parameters 96.100...96.102, which can be used to define a new user pass code and to select the actions that are to be prevented.   Entering an invalid pass code will close the user lock if open, ie. hide parameters 96.100_..96.102. After entering the code, check that the parameters are in fact hidden. If they are not, enter another (random) pass code.   Note: You must change the default user pass code to maintain a high level of cybersecurity. Store the code in a safe place - THE PROTECTION CANNOT BE DISABLED EVEN BY ABB if the code is lost.   See also section User lock (page 192).	
	0...99999999	Pass code.	-
96.03	Access level status	Shows which access levels have been activated by pass codes entered into parameter 96.02 Pass code.	0001b


Bit	Name	$0=$ Inactive, $1=$ Active
0	End user	$0=$ Inactive, $1=$ Active
1	Service	$0=$ Inactive, $1=$ Active
2	Advanced programmer	
$3 \ldots 10$	Reserved	$0=$ Inactive, $1=$ Active
11	OEM access level 1	$0=$ Inactive, $1=$ Active
12	OEM access level 2	$0=$ Inactive, $1=$ Active
13	OEM access level 3	$0=$ Inactive, $1=$ Active
14	Parameter lock	
15	Reserved	


O0000000h...   FFFFFFFFh	Active access levels.	-		
96.04	Macro select	Selects the control macro. See chapter Control macros (page   77) for more information.   After a selection is made, the parameter reverts automatically   to Done.		Done
:---				
Done				
Macro selection complete; normal operation.				


No.	Name/Value	Description	Def/FbEq16
	PFC	PFC macro (see page 96).	16
	ABB standard (vector)	ABB standard (vector) macro (see page 80). For vector motor control.	17
	Torque control	Torque control macro see (page 98).	28
96.05	Macro active	Shows which control macro is currently selected. See chapter Control macros (page 77) for more information. To change the macro, use parameter 96.04 Macro select.	$\begin{aligned} & \hline \text { ABB } \\ & \text { standard } \end{aligned}$
	ABB standard	Factory macro (see page 78). For scalar motor control.	1
	Hand/Auto	Hand/Auto macro (see page 88).	2
	Hand/PID	Hand/PID macro (see page 90).	3
	3-wire	3 -wire macro see page 78).	11
	Alternate	Alternate macro see page 84).	12
	Motor potentiometer	Motor potentiometer macro (see page 86).	13
	PID	PID macro (see page 92).	14
	Panel PID	Panel PID macro (see page 94).	15
	PFC	PFC macro (see page 96).	16
	ABB standard (vector)	ABB standard (vector) macro (see page 80). For vector motor control.	17
	Torque control	Torque control macro (page 98).	28
96.06	Parameter restore	Restores the original settings of the control program, ie. parameter default values.   Note: This parameter cannot be changed while the drive is running.	Done
	Done	Restoring is completed.	0
	Restore defaults	Restores all editable parameter values to default values, except   - motor data and ID run results   - I/O extension module settings   - end user texts, such as customized warnings and faults, and the drive name   - control panel/PC communication settings   - fieldbus adapter settings   - control macro selection and the parameter defaults   - parameter 95.01 Supply voltage   - differentiated defaults implemented by parameters 95.20 HW options word 1 and 95.21 HW options word 2   - user lock configuration parameters 96.100...96.102.	8
	Clear all	Restores all editable parameter values to default values, except   - end user texts, such as customized warnings and faults, and the drive name   - control panel/PC communication settings   - control macro selection and the parameter defaults   - parameter 95.01 Supply voltage   - differentiated defaults implemented by parameters 95.20 HW options word 1 and 95.21 HW options word 2   - user lock configuration parameters 96.100...96.102.   - group 49 Panel port communication parameters.	62


No.	Name/Value	Description	Def/FbEq16
	Reset all fieldbus settings	Restores all fieldbus and communication related settings to default values.   Note: Fieldbus, control panel and PC tool communication are interrupted during the restore.	32
	Reset home view	Restores the Home view layout back to show the values of the default parameters defined by the control macro in use	512
	Reset end user texts	Restores all end user texts to default values, including the drive name, contact info, customized fault and warning texts, PID unit and currency unit.   Note: PID unit is reset only if it is user editable text, that is, parameter 40.79 Set 1 units is set to User text.	1024
	Reset motor data	Restores all motor nominal values and motor ID run results to default values.	2
	All to factory defaults	Restores settings and all editable parameters back to initial factory values, except   - differentiated defaults implemented by parameters 95.20 HW options word 1 and 95.21 HW options word 2.	34560
96.07	Parameter save manually	Saves the valid parameter values to the permanent memory on the drive control unit to ensure that operation can continue after cycling the power. Save the parameters with this parameter   - to store values sent from the fieldbus   - when using external +24 V DC power supply to the control unit: to save parameter changes before you power down the control unit. The supply has a very short hold-up time when powered off.   Note: A new parameter value is saved automatically when changed from the PC tool or control panel but not when altered through a fieldbus adapter connection.	Done
	Done	Save completed.	0
	Save	Save in progress.	1
96.08	Control board boot	Changing the value of this parameter to 1 reboots the control unit (without requiring a power off/on cycle of the complete drive module).   The value reverts to 0 automatically.	No action
	No action	1 = No action.	0
	Reboot	1 = Reboot the control unit.	1
96.10	User set status	Shows the status of the user parameter sets.   This parameter is read-only.   See also section User parameter sets (page 190).	n/a
	n/a	No user parameter sets have been saved.	0
	Loading	A user set is being loaded.	1
	Saving	A user set is being saved.	2
	Faulted	Invalid or empty parameter set.	3
	User1 IO active	User set 1 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2.	4
	User2 IO active	User set 2 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2.	5
	User3 IO active	User set 3 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2.	6


No.	Name/Value	Description			Def/FbEq16
	User4 IO active	User set 4 has been selected by parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2.			7
	Reserved				8... 19
	User1 backup	User set 1 has been saved or loaded.			20
	User2 backup	User set 2 has been saved or loaded.			21
	User3 backup	User set 3 has been saved or loaded.			22
	User4 backup	User set 4 has been saved or loaded.			23
96.11	User set save/load	Enables the saving and restoring of up to four custom sets of parameter settings.   The set that was in use before powering down the drive is in use after the next power-up.   Notes:   - Some hardware configuration settings, such as I/O extension module and fieldbus configuration parameters (groups $14 \ldots 16,47,50 \ldots 58$ and $92 \ldots 93$ ) are not included in user parameter sets.   - Parameter changes made after loading a set are not automatically stored - they must be saved using this parameter.   - This parameter cannot be changed while the drive is running			No action
	No action	Load or save operation complete; normal operation.			0
	User set I/O mode	Load user parameter set using parameters 96.12 User set I/O mode in1 and 96.13 User set I/O mode in2.			1
	Load set 1	Load user parameter set 1.			2
	Load set 2	Load user parameter set 2.			3
	Load set 3	Load user parameter set 3 .			4
	Load set 4	Load user parameter set 4.			5
	Reserved				6... 17
	Save to set 1	Save user parameter set 1.			18
	Save to set 2	Save user parameter set 2.			19
	Save to set 3	Save user parameter set 3.			20
	Save to set 4	Save user parameter set 4.			21
96.12	User set I/O mode in1	When parameter 96.11 User set save/load is set to User set I/O mode, selects the user parameter set together with parameter 96.13 User set I/O mode in2 as follows:			Not selected
		Status of source defined by par. 96.12	Status of source defined by par. 96.13	User parameter set selected	
		0	0	Set 1	
		1	0	Set 2	
		0	1	Set 3	
		1	1	Set 4	
	Not selected	0.			0
	Selected	1.			1

$\qquad$

No.	Name/Value	Description	Def/FbEq16
	DI1	Digital input DI1 (10.02 DI delayed status, bit 0).	2
	DI2	Digital input DI2 (10.02 DI delayed status, bit 1).	3
	DI3	Digital input DI3 (10.02 DI delayed status, bit 2).	4
	DI4	Digital input DI4 (10.02 DI delayed status, bit 3).	5
	DI5	Digital input DI5 (10.02 DI delayed status, bit 4).	6
	DI6	Digital input DI6 (10.02 DI delayed status, bit 5).	7
	Reserved		8... 17
	Timed function 1	Bit 0 of 34.01 Timed functions status (see page 327).	18
	Timed function 2	Bit 1 of 34.01 Timed functions status (see page 327).	19
	Timed function 3	Bit 2 of 34.01 Timed functions status (see page 327).	20
	Reserved		21... 23
	Supervision 1	Bit 0 of 32.01 Supervision status (see page 319).	24
	Supervision 2	Bit 1 of 32.01 Supervision status (see page 319).	25
	Supervision 3	Bit 2 of 32.01 Supervision status (see page 319).	26
	Other [bit]	Source selection (see Terms and abbreviations on page 196).	-
96.13	User set I/O mode in2	See parameter 96.12 User set I/O mode in1.	Not selected
96.16	Unit selection	Selects the unit of parameters indicating power, temperature and torque.	0000h


Bit	Name	Information	
0	Power unit	$0=\mathrm{kW}$	
		$1=\mathrm{hp}$	
1	Reserved		
2	Temperature   unit	$0={ }^{\circ} \mathrm{C}$	
	$1={ }^{\circ} \mathrm{F}$		
3	Reserved		
4	Torque unit	$0=\mathrm{Nm}(\mathrm{N} \cdot \mathrm{m})$	
		$1=\mathrm{lbft}(\mathrm{lb} \cdot \mathrm{ft})$	
$5 \ldots 15$	Reserved		


O000h...FFFFh	Unit selection word.	$1=1$
96.20	Time sync primary   source	Defines the first priority external source for synchronization of   the drive's time and date.
Internal	Panel link	
Fieldbus A	FENA/FPNO can get the time from SNTP server and set it as   the time for the drive.	3
Embedded FB	Embedded fieldbus has no function.	6
Panel link	You can set the time using control panel, or Drive composer   PC tool connected to the control panel.	8
Ethernet tool link	You can set the time manually using DCP over Ethernet. The   time can be set in the same way when you do it with USB and   control panel.	9


No.	Name/Value	Description	Def/FbEq16
96.51	Clear fault and event logger	Clears all events from the drive's fault and event logs.	Done
	Done	0 = No action.	0
	Reset	1 = Resets (clears) the loggers.	1
96.54	Checksum action	Selects how the drive reacts.   - when 96.55 Checksum control word, bit $8=1$ (Approved checksum A): if the parameter checksum 96.68 Actual checksumA does not match 96.71 Approved checksum A, and/or   - when 96.55 Checksum control word, bit $9=1$ (Approved checksum B): if the parameter checksum 96.69 Actual checksumB does not match 96.72 Approved checksum B	No action
	No action	No action taken. (The checksum feature is not in use.)	0
	Pure event	The drive generates an event log entry (B686 Checksum mismatch).	1
	Warning	The drive generates a warning (A686 Checksum mismatch).	2
	Warning and prevent start	The drive generates a warning (A686 Checksum mismatch). Starting the drive is prevented.	3
	Fault	The drive trips on 6200 Checksum mismatch.	4
96.55	Checksum control word	Bits $8 \ldots . .9$ select which comparison(s) are made:   - Bit $8=1$ (Approved checksum A): 96.68 Actual checksumA is compared to 96.71 Approved checksum A, and/or   - Bit $9=1$ (Approved checksum A): if 96.69 Actual checksumB is compared to 96.72 Approved checksum B.   Bits $12 \ldots 13$ select approved (reference) checksum parameter(s) into which the actual checksum(s) from parameter(s) are copied:   - Bit $12=1$ (Set approved checksum A): Value of 96.68 Actual checksumA is copied into 96.71 Approved checksum A, and/or   - Bit $13=1$ (Set approved checksum B): Value of 96.69 Actual checksumB copied into 96.72 Approved checksum B.	00000000h
	Bit Name Information		
	$0 . .7$ Reserved   8 Approved	(1)	
		$\begin{aligned} & 1=\text { Enabled: Checksum A (96.71) is observed. } \\ & 0=\text { Disabled. } \end{aligned}$	
	Approved checksum B	$1=$ Enabled: Checksum B (96.72) is observed.$0=$ Disabled.	
	Reserved		
	Set approved checksum A	1 = Set: Copy value of 96.68 into 96.71 . $0=$ Done (copy has been made).	
	Set approved checksum B	$\begin{aligned} & 1=\text { Set: Copy value of } 96.69 \text { into } 96.72 . \\ & 0=\text { Done (copy has been made). } \end{aligned}$	
	1 = lbft (lb ft)		
	$14 . .15$ Reserved		
	$\begin{aligned} & \hline 00000000 \ldots \\ & \text { FFFFFFFFh } \end{aligned}$	Checksum control word.	$1=1$


No.	Name/Value	Description	Def/FbEq16
96.68	Actual checksumA	Displays the actual parameter configuration checksum A. The checksum $A$ is generated and updated whenever an action is selected in 96.54 Checksum action and 96.55 Checksum control word, bit 8 = 1 (Approved checksum A).   Checksum A calculation does not include   - fieldbus settings.   The parameters included in the calculation are user editable parameters in parameter groups 10, 11, 12, 13, 15, 19, 20, $21,22,23,24,25,28,30,31,32,34,35,36,37,40,41,43 \text {, }$   $45,46,70,71,72,73,74,76,80,94,95,96,97,98,99$.   See also section Parameter checksum calculation (page 191).	Oh
	00000000... FFFFFFFFFh	Actual checksum.	-
96.69	Actual checksumB	Displays the actual parameter configuration checksum $B$. The checksum $B$ is generated and updated whenever an action is selected in 96.54 Checksum action and 96.55 Checksum control word, bit 9 = 1 (Approved checksum B).   Checksum B calculation does not include   - fieldbus settings   - motor data settings   - energy data settings.   The parameters included in the calculation are user editable parameters in parameter groups 10, 11, 12, 13, 15, 19, 20, $21,22,23,24,25,28,30,31,32,34,35,36,37,40,41,43 \text {, }$   $46,70,71,72,73,74,76,80,94,95,96,97$.   See also section Parameter checksum calculation (page 191).	Oh
	00000000h... FFFFFFFFh	Actual checksum.	-
96.70	Disable adaptive program	Enables/disables the adaptive program (if present). See also section Adaptive programming (page 117).	Yes
	No	Adaptive program enabled.	0
	Yes	Adaptive program disabled.	1
96.71	Approved checksum A	Approved (reference) checksum A.	Oh
	00000000h... FFFFFFFFFh	Approved checksum A.	-
96.72	Approved checksum B	Approved (reference) checksum B.	Oh
	00000000h... FFFFFFFFh	Approved checksum B.	-
96.78	550 compatibility mode	Enables/disables a Modbus user to access a select set of parameters using 550 register numbering.   See the supported parameters in section Parameters supported by Modbus backwards compatibility with 550 on page 439.	Disable
	Disable	Using 550 compatibility mode is disabled.	0
	Enable	Using 550 compatibility mode is enabled.	1


No.	Name/Value		Description		Def/FbEq16
96.100	Change user pass code		(Visible when user lock is open)   To change the current user pass code, enter a new code into this parameter as well as 96.101 Confirm user pass code. A warning will be active until the new pass code is confirmed. To cancel changing the pass code, close the user lock without confirming. To close the lock, enter an invalid pass code in parameter 96.02 Pass code, activate parameter 96.08 Control board boot, or cycle the power. See also section User lock (page 192).		10000000
	$\begin{aligned} & 10000000 \ldots \\ & 99999999 \end{aligned}$		New user pass code.		-
96.101	Confirm user pass code		(Visible when user lock is open) Confirms the new user pass code entered in 96.100 Change user pass code.		
	$\begin{aligned} & 10000000 \ldots \\ & 99999999 \end{aligned}$		Confirmation of new user pass code.		
96.102	User lock functionality		(Visible when user lock is open)   Selects the actions or functionalities to be prevented by the user lock. Note that the changes made take effect only when the user lock is closed. See parameter 96.02 Pass code.   Note: ABB recommends you select all the actions and functionalities unless otherwise required by the application.		0000h
	Bit	Name		Information	
	0 D	Disable ABB access   levels		$1=\mathrm{ABB}$ access levels (service, advanced programmer, etc.; see96.03 ) disabled	
	1 F	Freeze parameter lock state		$1=$ Changing the parameter lock state prevented, ie. pass code358 has no effect	
	2	Disable file download		1 = Loading of files to drive prevented. This applies to   - firmware upgrades   - parameter restore   - loading an adaptive program   - changing Home view of control panel   - editing drive texts   - editing the favorite parameters list on control panel   - configuration settings made through control panel such as time/date formats and enabling/disabling clock display.	
	3...10 R	Reserved			
	11 D	Disable OEM access level 1		1 = OEM access level 1 disabled	
	12 D	Disable OEM access level 2		1 = OEM access level 2 disabled	
	13 D	Disable OEM access level 3		1 = OEM access level 3 disabled	
	14...15	Reserved			
	0000h...FFFFh		Selection of actions to be prevented by user lock.		-


No.	Name/Value	Description	Def/FbEq16
97 Motor control		Switching frequency; slip gain; voltage reserve; flux braking; anti-cogging (signal injection); IR compensation.	
97.01	Switching frequency reference	Defines the switching frequency of the drive that is used as long as the drive stays below the thermal limit. See section Switching frequency on page 164.   Higher switching frequency results in lower acoustic motor noise. Lower switching frequency generates less switching losses and reduce EMC emissions.   Notes:   - If you have a multimotor system, contact your local ABB representative.   - With the CPTC-02 ATEX-certified thermistor protection module, follow the instructions given in the CPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (+L537+Q971) user's manual (3AXD50000030058 [English].   - With an ABB EX motor, follow the instructions given in the ABB EX motor documentation.	4 kHz
	2 kHz	2 kHz .	2
	4 kHz	4 kHz .	4
	8 kHz	8 kHz .	8
	12 kHz	12 kHz .	12
97.02	Minimum switching frequency	Lowest switching frequency value that is allowed. Depends on the frame size.   When drive is reaching the thermal limit, it will automatically start to reduce the switching frequency until the minimum allowed value is reached. Once the minimum has been reached, the drive will automatically start limiting the output current to keep the temperature below the thermal limit. Inverter temperature is shown by parameter 05.11 Inverter temperature.   Notes:   - With the CPTC-02 ATEX-certified thermistor protection module, follow the instructions given in the CPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (+L537+Q971) user's manual (3AXD50000030058 [English].   - With an ABB EX motor, follow the instructions given in the ABB EX motor documentation.	1.5 kHz
	1.5 kHz	1.5 kHz . Not for all frame sizes.	1
	2 kHz	2 kHz .	2
	4 kHz	4 kHz .	4
	8 kHz	8 kHz .	8
	12 kHz	12 kHz .	12


No.	Name/Value	Description	Def/FbEq16
97.03	Slip gain	Defines the slip gain which is used to improve the estimated motor slip. $100 \%$ means full slip gain; $0 \%$ means no slip gain. The default value is $100 \%$. Other values can be used if a static speed error is detected despite having the setting at full slip gain.   Example (with nominal load and nominal slip of 40 rpm ): A 1000 rpm constant speed reference is given to the drive. Despite having full slip gain $(=100 \%)$, a manual tachometer measurement from the motor axis gives a speed value of 998 rpm . The static speed error is $1000 \mathrm{rpm}-998 \mathrm{rpm}=2 \mathrm{rpm}$. To compensate the error, the slip gain should be increased to $105 \%$ ( $2 \mathrm{rpm} / 40 \mathrm{rpm}=5 \%$ ).	100\%
	0...200\%	Slip gain.	1 = 1\%
97.04	Voltage reserve	Defines the minimum allowed voltage reserve. When the voltage reserve has decreased to the set value, the drive enters the field weakening area.   Note: This is an expert level parameter and should not be adjusted without appropriate skill.   If the intermediate circuit DC voltage $U_{\mathrm{dc}}=550 \mathrm{~V}$ and the voltage reserve is $5 \%$, the RMS value of the maximum output voltage in steady-state operation is $0.95 \times 550 \mathrm{~V} / \mathrm{sqrt}(2)=369 \mathrm{~V}$   The dynamic performance of the motor control in the field weakening area can be improved by increasing the voltage reserve value, but the drive enters the field weakening area earlier.	-2\%
	-4...50\%	Voltage reserve.	1 = 1\%
97.05	Flux braking	Defines the level of flux braking power. (Other stopping and braking modes can be configured in parameter group 21 Start/stop mode).   Note: This is an expert level parameter and should not be adjusted without appropriate skill.	Disabled
	Disabled	Flux braking is disabled.	0
	Moderate	Flux level is limited during the braking. Deceleration time is longer compared to full braking.	1
	Full	Maximum braking power. Almost all available current is used to convert the mechanical braking energy to thermal energy in the motor.   WARNING! Using full flux braking heats up the motor especially in cyclic operation. Make sure that the motor can withstand this if you have a cyclic application.	2
97.08	Optimizer minimum torque	This parameter can be used to improve the control dynamics of a synchronous reluctance motor or a salient permanent magnet synchronous motor.   As a rule of thumb, define a level to which the output torque must rise with minimum delay. This will increase the motor current and improve the torque response at low speeds.	0.0\%
	0.0 ... 1600.0\%	Optimizer torque limit.	$10=1 \%$


No.	Name/Value	Description	Def/FbEq16
97.10	Signal injection	Enables the anti-cogging function: a high-frequency alternating signal is injected to the motor in the low speed region to improve the stability of torque control. This removes the "cogging" that can sometimes be seen as the rotor passes the motor magnetic poles. Anti-cogging can be enabled with different amplitude levels.   Notes:   - This is an expert level parameter and should not be adjusted without appropriate skill.   - Use as low a level as possible that gives satisfactory performance.   - Signal injection cannot be applied to asynchronous motors.   - For frames R6...R9 only.	Disabled
	Disabled	Anti-cogging disabled.	0
	Enabled (5\%)	Anti-cogging enabled with amplitude level of 5\%.	1
	Enabled (10\%)	Anti-cogging enabled with amplitude level of 10\%.	2
	Enabled (15\%)	Anti-cogging enabled with amplitude level of 15\%.	3
	Enabled (20\%)	Anti-cogging enabled with amplitude level of 20\%.	4
97.11	TR tuning	Rotor time constant tuning.   This parameter can be used to improve torque accuracy in closed-loop control of an induction motor. Normally, the motor identification run provides sufficient torque accuracy, but manual fine-tuning can be applied in exceptionally demanding applications to achieve optimal performance. Note: This is an expert level parameter and should not be adjusted without appropriate skill.	100\%
	25...400\%	Rotor time constant tuning.	1 = $1 \%$


No.	Name/Value	Description					Def/FbEq16
97.13 IR compensation		Defines the relative output voltage boost at zero speed (IR compensation). The function is useful in applications with a high break-away torque where vector control cannot be applied.   $U / U_{N}$   (\%)					Type specific (\%)
	0.00...50.00\%	Voltage boost at zero speed in percent of nominal motor voltage.					1 = $1 \%$
97.15	Motor model temperature adaptation	Enables the motor model temperature adaptation. Estimated motor temperature can be used to adapt temperature dependent parameters (for example, resistances) of motor model.					Disabled
	Disabled	Temperature adaptation disabled.					0
	Estimated temperature	Temperature adaptation with motor temperature estimate (parameter 35.01 Motor estimated temperature).					1
97.16	Stator temperature factor	Tunes the motor temperature dependence of stator parameters (stator resistance).					50\%
	0...200\%	Tuning factor.					1 = 1\%
97.17	Rotor temperature factor	Tunes the motor temperature dependence of rotor parameters (for example,. rotor resistance).					100\%
	0...200\%	Tuning factor.					1 = 1\%
97.20	U/F ratio	Selects the form for the U/f (voltage to frequency) ratio below field weakening point. For scalar control only.   Note: The U/f function cannot be used with energy optimization; if 45.11 Energy optimizer is set to Enable, parameter 97.20 U/F ratio is ignored.					Linear
	Linear	Linear ratio for constant torque applications.					0


No.	Name/Value	Description	Def/FbEq16
	Squared	Squared ratio for centrifugal pump and fan applications. With squared U/f ratio the noise level is lower for most operating frequencies. Not recommended for permanent magnet motors.	1
97.48	Udc stabilizer	Enables or disables the DC bus voltage stabilizer.	Disabled
	Disabled	DC bus voltage stabilizer disabled.	0
	Enabled min	DC bus voltage stabilizer enabled, minimum stabilization.	50
	Enabled mild	DC bus voltage stabilizer enabled, mild stabilization.	100
	Enabled medium	DC bus voltage stabilizer enabled, medium stabilization.	300
	Enabled strong	DC bus voltage stabilizer enabled, strong stabilization.	500
	Enabled max	DC bus voltage stabilizer enabled, maximum stabilization.	800
97.49	Slip gain for scalar	Sets gain for slip compensation in percent when the drive is operating in scalar control mode.   A squirrel-cage motor slips under load. Increasing the frequency as the motor torque increases compensates for the slip.   Note: This parameter is only effective in scalar motor control mode (parameter 99.04 Motor control mode is set to Scalar).	0\%
	0...200\%	$0 \%=$ No slip compensation.   $0 . .200 \%=$ Increasing slip compensation. 100\% means full slip compensation according to parameter 99.08 Motor nominal frequency and 99.09 Motor nominal speed.	1 = 1\%
97.94	IR comp max frequency	Sets the frequency at which IR compensation set by parameter 97.13 IR compensation reaches 0 V . Unit is percent of the motor nominal frequency.	50.0\%
	1.0...200.0\%	Frequency.	1 = 1\%
97.135	Udc ripple	Calculates ripple voltage.	0.0 V
	0.0...200.0 V	Voltage.	$1=1 \mathrm{~V}$


98 User motor   parameters	Motor values supplied by the user that are used in the motor   model.   These parameters are useful for non-standard motors, or to   just get more accurate motor control of the motor on site. A   better motor model always improves the shaft performance.	
98.01User motor model   mode	Activates the motor model parameters $98.02 \ldots 98.12$ and   98.14.   Notes:   - Parameter value is automatically set to zero when ID run is   selected by parameter 99.13 ID run requested. The values   of parameters $98.02 \ldots 98.12$ are then updated according to   the motor characteristics identified during the ID run.   - Measurements made directly from the motor terminals   during the ID run are likely to produce slightly different   values than those on a data sheet from a motor   manufacturer.	Not selected
This parameter cannot be changed while the drive is		
running.		


No.	Name/Value	Description	Def/FbEq16
98.02	Rs user	Defines the stator resistance $R_{\mathrm{S}}$ of the motor model. With a star-connected motor, $R_{\mathrm{S}}$ is the resistance of one winding. With a delta-connected motor, $R_{\mathrm{S}}$ is one-third of the resistance of one winding.   Resistance value is given at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 0.50000 \\ & \text { p.u. } \end{aligned}$	Stator resistance in per unit.	-
98.03	Rr user	Defines the rotor resistance $R_{R}$ of the motor model.   Resistance value is given at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.   Note: This parameter is valid only for asynchronous motors.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 0.50000 \\ & \text { p.u. } \end{aligned}$	Rotor resistance in per unit.	
98.04	Lmuser	Defines the main inductance $L_{M}$ of the motor model.   Note: This parameter is valid only for asynchronous motors.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 10.00000 \\ & \text { p.u. } \end{aligned}$	Main inductance in per unit.	-
98.05	SigmaL user	Defines the leakage inductance $\sigma L_{\mathrm{s}}$.   Note: This parameter is valid only for asynchronous motors.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 1.00000 \\ & \text { p.u. } \end{aligned}$	Leakage inductance in per unit.	-
98.06	Ld user	Defines the direct axis (synchronous) inductance.   Note: This parameter is valid only for permanent magnet motors.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 10.00000 \\ & \text { p.u } \end{aligned}$	Direct axis inductance in per unit.	-
98.07	Lq user	Defines the quadrature axis (synchronous) inductance. Note: This parameter is valid only for permanent magnet motors.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 10.00000 \\ & \text { p.u } \end{aligned}$	Quadrature axis inductance in per unit.	-
98.08	PM flux user	Defines the permanent magnet flux.   Note: This parameter is valid only for permanent magnet motors.	0.00000 p.u.
	$\begin{aligned} & 0.00000 \ldots 2.00000 \\ & \text { p.u } \end{aligned}$	Permanent magnet flux in per unit.	-
98.09	Rs user SI	Defines the stator resistance $R_{\mathrm{S}}$ of the motor model. Resistance value is given at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.	0.00000 ohm
	$\begin{aligned} & \hline 0.00000 \ldots \\ & 100.00000 \mathrm{ohm} \end{aligned}$	Stator resistance.	-
98.10	Rr user SI	Defines the rotor resistance $R_{R}$ of the motor model.   Resistance value is given at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.   Note: This parameter is valid only for asynchronous motors.	0.00000 ohm
	$\begin{aligned} & \hline 0.00000 \ldots \\ & 100.00000 \mathrm{ohm} \end{aligned}$	Rotor resistance.	-
98.11	Lm user SI	Defines the main inductance $L_{M}$ of the motor model.   Note: This parameter is valid only for asynchronous motors.	0.00 mH
	$\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$	Main inductance.	$1=10000$


No.	Name/Value	Description	Def/FbEq16
98.12	SigmaL user SI	Defines the leakage inductance $\sigma L_{\mathrm{s}}$.   Note: This parameter is valid only for asynchronous motors.	0.00 mH
	$\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$	Leakage inductance.	$\begin{aligned} & \hline 1=10000 \\ & \mathrm{mH} \end{aligned}$
98.13	Ld user SI	Defines the direct axis (synchronous) inductance.   Note: This parameter is valid only for permanent magnet motors.	0.00 mH
	$\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$	Direct axis inductance.	$\begin{aligned} & \hline 1=10000 \\ & \mathrm{mH} \end{aligned}$
98.14	Lq user SI	Defines the quadrature axis (synchronous) inductance. Note: This parameter is valid only for permanent magnet motors.	0.00 mH
	$\begin{aligned} & 0.00 \ldots 100000.00 \\ & \mathrm{mH} \end{aligned}$	Quadrature axis inductance.	$\begin{aligned} & 1=10000 \\ & \mathrm{mH} \end{aligned}$
99 Motor data		Motor configuration settings.	
99.03	Motor type	Selects the motor type.   Note: This parameter cannot be changed while the drive is running.	Asynchronous motor
	Asynchronous motor	Standard squirrel cage AC induction motor (asynchronous induction motor).	0
	Permanent magnet motor	Permanent magnet motor. Three-phase AC synchronous motor with permanent magnet rotor and sinusoidal BackEMF voltage.   Note: With permanent magnet motors special attention must be paid on setting the motor nominal values correctly in parameter group 99 Motor data. You must use vector control. If the nominal BackEMF voltage of the motor is not available, a full ID run should be performed for improving performance.	1
	SynRM	Synchronous reluctance motor. Three-phase AC synchronous motor with salient pole rotor without permanent magnets. You must use vector control for this selection.	2
99.04	Motor control mode	Selects the motor control mode.	Scalar
	Vector	Vector control. Vector control has better accuracy than scalar control but cannot be used in all situations (see selection Scalar below).   Requires motor identification run (ID run). See parameter 99.13 ID run requested.   Notes:   - In vector control the drive performs a standstill ID run at the first start if ID run has not been previously performed. A new start command is required after standstill ID run.   - To achieve a better motor control performance, you can perform a normal ID run without load.   See also section Operating modes of the drive (page 112).	0


No.	Name/Value	Description	Def/FbEq16
	Scalar	Scalar control. Suitable for most applications, if top performance is not required.   Motor identification run is not required.   Note: Scalar control must be used in the following situations:   - with multimotor systems 1 ) if the load is not equally shared between the motors, 2 ) if the motors are of different sizes, or 3 ) if the motors are going to be changed after the motor identification (ID run)   - if the nominal current of the motor is less than $1 / 6$ of the nominal output current of the drive (Note: However, when using flying start mode in scalar control, the nominal current must be above $1 / 6$ of the nominal output current of the drive, see parameter 21.19 Scalar start mode, selection Flying start.)   - if the drive is used with no motor connected (for example, for test purposes).   Note: Correct motor operation requires that the magnetizing current of the motor does not exceed $90 \%$ of the nominal current of the inverter.   See also section Speed compensated stop (page 168), and section Operating modes of the drive (page 112).	1
99.06	Motor nominal current	Defines the nominal motor current. Must be equal to the value on the motor rating plate. If multiple motors are connected to the drive, enter the total current of the motors.   Notes:   - Correct motor operation requires that the magnetizing current of the motor does not exceed $90 \%$ of the nominal current of the drive.   - This parameter cannot be changed while the drive is running.	0.0 A
	0.0...6400.0 A	Nominal current of the motor. The allowable range:   - vector control mode: $1 / 6 \ldots 2 \times I_{N}$ of the drive   - scalar control mode: $0 \ldots 2 \times I_{\mathrm{N}}$ with scalar control mode.   Note: When using flying start in scalar control mode (see parameter 21.19 Scalar start mode), the nominal current must be in the range allowed for vector control mode.	$\begin{aligned} & 1=1 \mathrm{~A} \\ & \text { See } 46.05 \end{aligned}$
99.07	Motor nominal voltage	Defines the nominal motor voltage supplied to the motor. This setting must match the value on the rating plate of the motor.   Notes:   - With permanent magnet motors, the nominal voltage is the BackEMF voltage at nominal speed of the motor. If the voltage is given as voltage per rpm, for example, 60 V per 1000 rpm , the voltage for a nominal speed of 3000 rpm is $3 \times 60 \mathrm{~V}=180 \mathrm{~V}$.   - The stress on the motor insulation is always dependent on the drive supply voltage. This also applies to the case where the motor voltage rating is lower than that of the drive and the supply.   - This parameter cannot be changed while the drive is running.	0.0 V
	0.0...960.0 V	Nominal voltage of the motor.	$10=1 \mathrm{~V}$
99.08	Motor nominal frequency	Defines the nominal motor frequency. This setting must match the value on the rating plate of the motor.   Note: This parameter cannot be changed while the drive is running.	50.00 Hz
	$0.00 . .500 .00 \mathrm{~Hz}$	Nominal frequency of the motor.	$10=1 \mathrm{~Hz}$


No.	Name/Value	Description	Def/FbEq16
99.09	Motor nominal speed	Defines the nominal motor speed. The setting must match the value on the rating plate of the motor.   Note: This parameter cannot be changed while the drive is running.	0 rpm
	0...30000 rpm	Nominal speed of the motor.	$1=1 \mathrm{rpm}$
99.10	Motor nominal power	Defines the nominal motor power. The setting must match the value on the rating plate of the motor. If multiple motors are connected to the drive, enter the total power of the motors. The unit is selected by parameter 96.16 Unit selection.   Note: This parameter cannot be changed while the drive is running.	$\begin{aligned} & 0.00 \mathrm{~kW} \text { or } \\ & \mathrm{hp} ; \end{aligned}$
	$\begin{aligned} & \hline 0.00 \ldots 10000.00 \\ & \mathrm{~kW} \text { or } \\ & 0.00 \ldots 13404.83 \mathrm{hp} \end{aligned}$	Nominal power of the motor.	$\begin{aligned} & 1 \text { = } 1 \text { unit } \\ & \text { See } 46.04 \end{aligned}$
99.11	Motor nominal cos ?	Defines the cosphi of the motor for a more accurate motor model. The value is not obligatory, but is useful with an asynchronous motor, especially when performing a standstill identification run. With a permanent magnet or synchronous reluctance motor, this value is not needed.   Notes:   - Do not enter an estimated value. If you do not know the exact value, leave the parameter at zero.   - This parameter cannot be changed while the drive is running.	0.00
	0.00...1.00	Cosphi of the motor.	$100=1$
99.12	Motor nominal torque	Defines the nominal motor shaft torque for a more accurate motor model. Not obligatory. The unit is selected by parameter 96.16 Unit selection.   Note: This parameter cannot be changed while the drive is running.	$\begin{aligned} & \hline 0.000 \\ & \mathrm{~N} \cdot \mathrm{~m} \text { or lb } \cdot \mathrm{ft} \end{aligned}$
	$\begin{aligned} & \hline 0.000 \ldots . .4000000 .000 \\ & \mathrm{~N} \cdot \mathrm{~m} \text { or } \\ & 0.000 . .2950248 .597 \\ & \mathrm{lb} \cdot \mathrm{ft} \end{aligned}$	Nominal motor torque.	1 = 100 unit


No.	Name/Value	Description	Def/FbEq16
99.13	ID run requested	Selects the type of the motor identification routine (ID run) performed at the next start of the drive. During the ID run, the drive will identify the characteristics of the motor for optimum motor control.   If no ID run has been performed yet (or if default parameter values have been restored using parameter 96.06 Parameter restore), this parameter is automatically set to Standstill, signifying that an ID run must be performed.   After the ID run, the drive stops and this parameter is automatically set to None.   Notes:   - To ensure that the ID run can work properly, the drive limits in group 30 (maximum speed and minimum speed, and maximum torque and minimum torque) must to be large enough (the range specified by the limits must be wide enough. If, for example, speed limits are less than the motor nominal speed, the ID run cannot be completed.   - Make sure the motor is stopped before starting the ID run.   - For the Advanced ID run, the machinery must always be de-coupled from the motor.   - With a permanent magnet or synchronous reluctance motor, a Normal, Reduced or Standstill ID run requires that the motor shaft is NOT locked and the load torque is less than $10 \%$.   - With scalar control mode (99.04 Motor control mode $=$ Scalar), the ID run is not requested automatically. However, an ID run can be performed for more accurate torque estimation.   - Once the ID run is activated, it can be canceled by stopping the drive.   - The ID run must be performed every time any of the motor parameters (99.04, 99.06...99.12) have been changed.   - Ensure that the Safe Torque Off and emergency stop circuits (if any) are closed during the ID run.   - Mechanical brake (if present) is not opened by the logic for the ID run.   - This parameter cannot be changed while the drive is running.	None
	None	No motor ID run is requested. This mode can be selected only if the ID run (Normal/Reduced/Standstill/Advanced) has already been performed once.	0
	Normal	Normal ID run. Guarantees good control accuracy for all cases. The ID run takes about 90 seconds. This mode should be selected whenever it is possible.   Notes:   - If the load torque will be higher than $20 \%$ of motor nominal torque, or if the machinery is not able to withstand the nominal torque transient during the ID run, then the driven machinery must be de-coupled from the motor during a Normal ID run.   - Check the direction of rotation of the motor before starting the ID run. During the run, the motor will rotate in the forward direction.   WARNING! The motor will run at up to approximately $50 \ldots 100 \%$ of the nominal speed during the ID run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!	1


No.	Name/Value	Description	Def/FbEq16
	Reduced	Reduced ID run. This mode should be selected instead of the Normal or Advanced ID Run if   - mechanical losses are higher than $20 \%$ (ie. the motor cannot be de-coupled from the driven equipment), or if   - flux reduction is not allowed while the motor is running (ie. in case of a motor with an integrated brake supplied from the motor terminals).   With this ID run mode, the resultant motor control in the field weakening area or at high torques is not necessarily as accurate as motor control following a Normal ID run. Reduced ID run is completed faster than the Normal ID Run (<90 seconds).   Note: Check the direction of rotation of the motor before starting the ID run. During the run, the motor will rotate in the forward direction.   WARNING! The motor will run at up to approximately $50 . .100 \%$ of the nominal speed during the ID run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!	2
	Standstill	Standstill ID run. The motor is injected with DC current. With an AC induction (asynchronous) motor, the motor shaft is not rotated. With a permanent magnet motor, the shaft can rotate up to half a revolution.   Note: This mode should be selected only if the Normal, Reduced or Advanced ID run is not possible due to the restrictions caused by the connected mechanics (eg. with lift or crane applications).	3
	Reserved		4
	Current measurement calibration	Current offset and gain measurement calibration is set to calibrate the control loops. The calibration will be performed at next start. Only for frames R6...R11.	5
	Advanced	Advanced ID run. Only for frames R6...R11.   Guarantees the best possible control accuracy. The ID run takes a very long time to complete. This mode should be selected when top performance is needed across the whole operating area.   Note: The driven machinery must be de-coupled from the motor because of high torque and speed transients that are applied. $\qquad$ WARNING! The motor may run at up to the maximum (positive) and minimum (negative) allowed speed during the ID run. Several accelerations and decelerations are done. The maximum torque, current and speed allowed by the limit parameters may be utilized. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!	6


No.	Name/Value	Description
Adaptive	Adaptive ID run. Improves the motor model accuracy during   normal operation of the drive.   The drive performs a Standstill ID run first. Motor parameters   are then updated with better accuracy during an adaptation   sequence when following user's driving profile. When the   adaptation is complete, parameters 99.14 Last ID run   performed changes from Standstill to Adaptive. Motor   parameters are updated automaticlly and the user is not   required to update any other parameter.   Notes:   (For vector control only.   F For frame sizes R1...R5 only.	8
None	Shows the type of ID run that was performed last. For more   information about the different modes, see the selections of   parameter 99.13 ID run requested.	None
Normal	No ID run has been performed.	0
Reduced	Normal ID run.	Reduced ID run.

## Differences in the default values between 50 Hz and 60 Hz supply frequency settings

Parameter 95.20 HW options word 1 bit 0 Supply frequency 60 Hz changes the drive parameter default values according to the supply frequency, 50 Hz or 60 Hz . The bit is set according to the market before the drive is delivered.

If you need to change from 50 Hz to 60 Hz , or vice versa, change the value of the bit and then do a complete reset to the drive. After that you have to reselect the macro to be used.

The table below shows the parameters whose default values depend on the supply frequency setting. The supply frequency setting, with the type designation of the drive, also affects Group 99 Motor data parameter values though these parameters are not listed in the table.

No	Name	$95.20 ~ H W$ options word 1 bit   Supply frequency 60 Hz $=$   $\mathbf{5 0 ~ H z}$	95.20 HW options word 1   bit Supply frequency 60 Hz =   $\mathbf{6 0 ~ H z}$
11.45	Freq in 1 at scaled max	1500.000	1800.000
15.35	Freq out 1 src max	1500.000	1800.000
12.20	Al1 scaled at Al1 max	50.000	60.000
13.18	AO1 source max	50.0	60.0
22.26	Constant speed 1	300.00 rpm	360.00 rpm
22.27	Constant speed 2	600.00 rpm	720.00 rpm
22.28	Constant speed 3	900.00 rpm	1080.00 rpm
22.29	Constant speed 4	1200.00 rpm	1440.00 rpm
22.30	Constant speed 5	1500.00 rpm	1800.00 rpm
22.30	Constant speed 6	2400.00 rpm	2880.00 rpm
22.31	Constant speed 7	3000.00 rpm	3600.00 rpm
28.26	Constant frequency 1	10.00 Hz	6.00 Hz
28.27	Constant frequency 2	15.00 Hz	12.00 Hz
28.28	Constant frequency 3	20.00 Hz	18.00 Hz
28.29	Constant frequency 4	25.00 Hz	24.00 Hz
28.30	Constant frequency 5	40.00 Hz	30.00 Hz
28.31	Constant frequency 6	50.00 Hz	48.00 Hz
28.32	Constant frequency 7	60.00 Hz	


No	Name	$95.20 ~ H W$ options word 1 bit   Supply frequency $60 \mathrm{~Hz}=$   $\mathbf{5 0 ~ H z}$	95.20 HW options word 1   bit Supply frequency 60 Hz =   $\mathbf{6 0 ~ H z}$
30.11	Minimum speed	0.00 rpm	0.00 rpm
30.12	Maximum speed	1500.00 rpm	1800.00 rpm
30.13	Minimum frequency	0.00 Hz	0.00 Hz
30.14	Maximum frequency	50.00 Hz	60.00 Hz
31.26	Stall speed limit	150.00 rpm	180.00 rpm
31.27	Stall frequency limit	15.00 Hz	18.00 Hz
31.30	Overspeed trip margin	500.00 rpm	500.00 rpm
46.01	Speed scaling	1500.00 rpm	1800.00 rpm
46.02	Frequency scaling	50.00 Hz	60.00 Hz
46.31	Above speed limit	1500.00 rpm	1800.00 rpm
46.32	Above frequency limit	50.00 Hz	60.00 Hz

## Parameters supported by Modbus backwards compatibility with 550

ACx550 compatibility mode is a way to communicate with an ACx580 drive in such a way that it looks like an ACx550 drive over Modbus RTU or Modbus TCP. This mode can be enabled by changing parameter 96.78550 compatibility mode to Enable.

In the 550 compatibility mode all supported parameters can be read as if the drive were an ACx550. Some parameters are read only and do not support writes. See the table below to see which parameters support writes.

$\begin{array}{\|l\|} \hline \text { ACx550 } \\ \text { parameter } \end{array}$	Name	Read/Write
01.01	SPEED \& DIR	Read only
01.02	SPEED	Read only
01.03	OUTPUT FREQ	Read only
01.04	CURRENT	Read only
01.05	TORQUE	Read only
01.06	POWER	Read only
01.07	DC BUS VOLTAGE	Read only
01.09	OUTPUT VOLTAGE	Read only
01.10	DRIVE TEMP	Read only
01.11	EXTERNAL REF 1	Read only
01.13	CTRL LOCATION	Read only
01.14	RUN TIME	Read only
01.15	KWH COUNTER	Read only
01.18	DI 1-3 STATUS	Read only
01.19	DI 4-6 STATUS	Read only
01.20	AI 1	Read only
01.21	AI 2	Read only
01.22	RO 1-3 STATUS	Read only
01.23	RO 4-6 STATUS	Read only
01.24	AO 1	Read only
01.25	AO 2	Read only
01.26	PID 1 OUTPUT	Read only
01.27	PID 2 OUTPUT	Read only
01.28	PID 1 SETPNT	Read only
01.29	PID 2 SETPNT	Read only
01.30	PID 1 FBK	Read only
01.31	PID 2 FBK	Read only
01.32	PID 1 DEVIATION	Read only
01.33	PID 2 DEVIATION	Read only


ACx550 parameter	Name	Read/Write
01.34	COMM RO WORD	Read only
01.35	COMM VALUE 1	Read only
01.36	COMM VALUE 2	Read only
01.41	MWH COUNTER	Read only
01.43	DRIVE ON TIME	Read only
01.45	MOTOR TEMP	Read only
01.50	CB TEMP	Read only
01.74	SAVED KWH	Read only
01.75	SAVED MWH	Read only
01.77	SAVED AMOUNT 2	Read only
01.78	SAVED CO2	Read only
03.01	FB CMD WORD 1	Read only
03.02	FB CMD WORD 2	Read only
03.03	FB STS WORD 1	Read only
03.04	FB STS WORD 2	Read only
03.05	FAULT WORD 1	Read only
03.06	FAULT WORD 2	Read only
03.07	FAULT WORD 3	Read only
03.08	ALARM WORD 1	Read only
03.09	ALARM WORD 2	Read only
04.01	LAST FAULT	Read only
04.12	PREVIOUS FAULT 1	Read only
04.13	PREVIOUS FAULT 2	Read only
10.01	EXT1 COMMANDS	Read/Write
10.02	EXT2 COMMANDS	Read/Write
10.03	DIRECTION	Read/Write
10.04	JOGGING SEL	Read/Write
11.02	EXT1/EXT2 SEL	Read/Write
11.03	REF1 SELECT	Read/Write


ACx550 parameter	Name	Read/Write
11.04	REF1 MIN	Read/Write
11.05	REF1 MAX	Read/Write
11.06	REF2 SEL	Read/Write
11.07	REF2 MIN	Read/Write
11.08	REF2 MAX	Read/Write
12.01	CONST SPEED SEL	Read/Write
12.02	CONST SPEED 1	Read/Write
12.03	CONST SPEED 2	Read/Write
12.04	CONST SPEED 3	Read/Write
12.05	CONST SPEED 4	Read/Write
12.06	CONST SPEED 5	Read/Write
12.07	CONST SPEED 6	Read/Write
15.02	CONST SPEED 7	Read/Write
15.03	AO1 CONTENT MAX	Read/Write
15.04	MINIMUM AO1	Read/Write
15.05	MAXIMUM AO1	Read/Write
15.08	AO2 CONTENT MIN	Read/Write
15.09	AO2 CONTENT MAX	Read/Write
15.10	MINIMUM AO2	Read/Write
15.11	MAXIMUM AO2	Read/Write
16.01	RUN ENABLE	Read/Write
16.02	PARAMETER LOCK	Read/Write
16.03	PASS CODE	Read/Write
16.08	START ENABLE 1	Read/Write
16.09	START ENABLE 2	Read/Write
20.01	MINIMUM SPEED	Read/Write
20.02	MAXIMUM SPEED	Read/Write
20.03	MAX CURRENT	Read/Write
20.06	UNDERVOLT CRTL	Read/Write
20.07	MINIMUM FREQ	Read/Write
20.08	MAXIMUM FREQ	Read/Write
20.13	MIN TORQUE SEL	Read/Write
20.14	MAX TORQUE SEL	Read/Write
20.15	MIN TORQUE 1	Read/Write
20.16	MIN TORQUE 2	Read/Write
20.17	MAX TORQUE 1	Read/Write
20.18	MAX TORQUE 2	Read/Write
21.02	STOP FUNCTION	Read/Write
21.03	DC MAGN TIME	Read/Write


ACx550   parameter	Name	Read/Write
21.05	DC HOLD SPEED	Read/Write
21.06	DC CURR REF	Read/Write
21.09	EMERG STOP SEL	Read/Write
21.12	ZERO SPEED DELAY	Read/Write
21.13	START DELAY	Read/Write
22.02	ACCELER TIME 1	Read/Write
22.03	DECELER TIME 1	Read/Write
22.04	RAMP SHAPE 1	Read/Write
22.05	ACCELER TIME 2	Read/Write
22.06	DECELER TIME 2	Read/Write
22.07	RAMP SHAPE 2	Read/Write
22.08	EMERG DEC TIME	Read/Write
23.01	PROP GAIN	Read/Write
23.02	INTEGRATION TIME	Read/Write
23.03	DERIVATION TIME	Read/Write
23.04	ACC COMPENSATION	Read/Write
30.02	PANEL COMM ERR	Read/Write
30.03	EXTERNAL REF 1	Read/Write
30.04	EXTERNAL REF 2	Read/Write
30.05	MOT THERM POT	Read/Write
30.03	DERIVATION TIME	Read/Write
30.06	MOT THERM TIME	Read/Write
30.07	MOT LOAD CURVE	Read/Write
30.08	ZERO SPEED LOAD	Read/Write
33.03	RREAK POINT FREQ	Read/Write
30.09	STALL FUNCTION	Read/Write
30.10	STALL FREQUENCY	Read/Write
30.11	STALL TIME	Read/Write
30.12		RARTH FAULT


ACx550   parameter	Name	Read/Write
40.04	PID DERIV FILTER	Read/Write
40.08	$0 \%$ VALUE	Read/Write
40.09	$100 \%$ VALUE	Read/Write
40.10	SET POINT SEL	Read/Write
40.11	INTERNAL SETPNT	Read/Write
40.12	SETPOINT MIN	Read/Write
40.13	SETPOINT MAX	Read/Write
40.14	FBK SEL	Read/Write
40.15	FBK MULTIPLIER	Read/Write
40.16	ACT 1 INPUT	Read/Write
40.17	ACT 2 INPUT	Read/Write
40.24	PID SLEEP DELAY	Read/Write
40.25	WAKE-UP DEV	Read/Write
40.26	WAKE-UP DELAY	Read/Write
40.27	PID 1 PARAM SET	Read/Write
41.01	GAIN	Read/Write
41.02	INTEGRATION TIME	Read/Write
41.03	DERIVATION TIME	Read/Write
41.04	PID DERIV FILTER	Read/Write
41.08	$0 \%$ VALUE	Read/Write
41.09	$100 \% ~ V A L U E ~$	Read/Write
41.10	SET POINT SEL	Read/Write


ACx550   parameter	Name	Read/Write
41.11	INTERNAL SETPNT	Read/Write
41.12	SETPOINT MIN	Read/Write
41.13	SETPOINT MAX	Read/Write
41.14	FBK SEL	Read/Write
41.15	FBK MULTIPLIER	Read/Write
41.16	ACT 1 INPUT	Read/Write
41.17	ACT 2 INPUT	Read/Write
41.24	PID SLEEP DELAY	Read/Write
41.25	WAKE-UP DEV	Read/Write
41.26	WAKE-UP DELAY	Read/Write
42.11	INTERNAL SETPNT	Read/Write
53.05	EFB CTRL PROFILE	Read/Write
99.01	LANGUAGE	Read/Write
99.04	MOTOR CTRL MODE	Read/Write
99.05	MOTOR NOM VOLT	Read/Write
99.06	MOTOR NOM CURR	Read/Write
99.07	MOTOR NOM FREQ	Read/Write
99.08	MOTOR NOM SPEED	Read/Write
99.09	MOTOR NOM POWER	Read/Write
99.10	ID RUN	Read/Write
99.15	MOTOR COS PHI	Read/Write

## Additional parameter data

## What this chapter contains

This chapter lists the parameters with some additional data such as their ranges and 32-bit fieldbus scaling. For parameter descriptions, see chapter Parameters (page 195).

## Terms and abbreviations

Term	Definition
Actual signal	Signal measured or calculated by the drive. Usually can only be monitored   but not adjusted; some counter-type signals can however be reset.
Analog src	Analog source: the parameter can be set to the value of another parameter   by choosing "Other", and selecting the source parameter from a list.   In addition to the "Other" selection, the parameter may offer other pre-   selected settings.
Binary src	Binary source: the value of the parameter can be taken from a specific bit   in another parameter value ("Other"). Sometimes the value can be fixed to   0 (false) or 1 (true). In addition, the parameter may offer other pre-selected   settings.
Data	Data parameter
FbEq32	32-bit fieldbus equivalent: The scaling between the value shown on the   panel and the integer used in communication when a 32-bit value is   selected for transmission to an external system.   The corresponding 16-bit scalings are listed in chapter Parameters (page   195).
List	Selection list.


Term	Definition
No.	Parameter number.
PB	Packed Boolean (bit list).
Real	Real number.
Type	Parameter type. See Analog src, Binary src, List, PB, Real.

## Fieldbus addresses

Refer to the User's manual of the fieldbus adapter.

## Parameter groups 1... 9

No.	Name	Type	Range	Unit	FbEq32
01 Actual values					
01.01	Motor speed used	Real	-30000.00...30000.00	rpm	100 = 1 rpm
01.02	Motor speed estimated	Real	-30000.00...30000.00	rpm	100 = 1 rpm
01.03	Motor speed \%	Real	-1000.00...1000.00	\%	100 = 1\%
01.06	Output frequency	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
01.07	Motor current	Real	0.00... 30000.00	A	$100=1 \mathrm{~A}$
01.08	Motor current \% of motor nom	Real	0.0... 1000.0	\%	10 = 1\%
01.09	Motor current \% of drive nom	Real	0.0... 1000.0	\%	10 = 1\%
01.10	Motor torque	Real	-1600.0...1600.0	\%	10 = 1\%
01.11	DC voltage	Real	0.00... 2000.00	V	$100=1 \mathrm{~V}$
01.13	Output voltage	Real	0... 2000	V	$1=1 \mathrm{~V}$
01.14	Output power	Real	-32768.00..32767.00	kW	$100=1$ unit
01.15	Output power \% of motor nom	Real	-300.00...300.00	\%	$100=1 \%$
01.17	Motor shaft power	Real	-32768.00..32767.00	kW or hp	$100=1$ unit
01.18	Inverter GWh counter	Real	0... 65535	GWh	$1=1 \mathrm{GWh}$
01.19	Inverter MWh counter	Real	0... 1000	MWh	1 = 1 MWh
01.20	Inverter kWh counter	Real	0... 1000	kWh	1 = 1 kWh
01.24	Flux actual \%	Real	0... 200	\%	1 = 1\%
01.30	Nominal torque scale	Real	0.000...4000000.000	$\mathrm{N} \cdot \mathrm{m}$ or $\mathrm{lb} \cdot \mathrm{ft}$	$1000=1$ unit
01.50	Current hour kWh	Real	0.00... 1000000.00	kWh	$100=1 \mathrm{kWh}$
01.51	Previous hour kWh	Real	0.00... 1000000.00	kWh	$100=1 \mathrm{kWh}$
01.52	Current day kWh	Real	0.00... 1000000.00	kWh	$100=1 \mathrm{kWh}$
01.53	Previous day kWh	Real	0.00... 1000000.00	kWh	$100=1 \mathrm{kWh}$
01.54	Cumulative inverter energy	Real	$\begin{gathered} -200000000.0 \ldots \\ 200000000.0 \end{gathered}$	kWh	$1=1 \mathrm{kWh}$
01.55	Inverter GWh counter (resettable)	Real	0... 65535	GWh	1 = 1 GWh
01.56	Inverter MWh counter (resettable)	Real	0... 1000	MWh	1 = 1 MWh
01.57	Inverter kWh counter (resettable)	Real	0... 1000	kWh	$1=1 \mathrm{kWh}$
01.58	Cumulative inverter energy (resettable)	Real	$\begin{gathered} -200000000.0 \ldots \\ 200000000.0 \end{gathered}$	kWh	$1=1 \mathrm{kWh}$
01.61	Abs motor speed used		0.00... 30000.00	rpm	$100=1 \mathrm{rpm}$
01.62	Abs motor speed \%		0.00...1000.00\%	\%	$100=1 \%$
01.63	Abs output frequency		0.00.. 500.00 Hz	Hz	$100=1 \mathrm{~Hz}$
01.64	Abs motor torque		0.0.. 1600.0	\%	10 = 1\%
01.65	Abs output power		0.00... 32767.00	kW	$100=1 \mathrm{~kW}$
01.66	Abs output power \% motor nom		0.00...300.00	\%	$100=1 \%$
01.67	Abs output power \% drive nom		0.00... 300.00	\%	$100=1 \%$
01.68	Abs motor shaft power		0.00... 32767.00	kW	$100=1 \mathrm{~kW}$


No.	Name	Type	Range	Unit	FbEq32
$\mathbf{0 3}$ Input references					
03.01	Panel reference	Real	$-100000.00 \ldots 100000.00$	-	$100=1$
03.02	Panel reference remote	Real	$-100000.00 \ldots 100000.00$	-	$100=1$
03.05	FB A reference 1	Real	$-100000.00 \ldots 100000.00$	-	$100=1$
03.06	FB A reference 2	Real	$-100000.00 \ldots 100000.00$	-	$100=1$
03.09	EFB reference 1	Real	$-30000.00 \ldots 30000.00$	-	$100=1$
03.10	EFB reference 2	Real	$-30000.00 \ldots 30000.00$	-	$100=1$

04 Warnings and faults

04.01	Tripping fault	Data	0000h...FFFFh	-	$1=1$
04.02	Active fault 2	Data	0000h...FFFFh	-	1 = 1
04.03	Active fault 3	Data	0000h...FFFFh	-	1 = 1
04.06	Active warning 1	Data	0000h...FFFFh	-	1 = 1
04.07	Active warning 2	Data	0000h...FFFFh	-	1 = 1
04.08	Active warning 3	Data	0000h...FFFFh	-	1 = 1
04.11	Latest fault	Data	0000h...FFFFh	-	1 = 1
04.12	2nd latest fault	Data	0000h...FFFFh	-	1 = 1
04.13	3rd latest fault	Data	0000h...FFFFh	-	1 = 1
04.16	Latest warning	Data	0000h...FFFFh	-	1 = 1
04.17	2nd latest warning	Data	0000h...FFFFh	-	1 = 1
04.18	3rd latest warning	Data	0000h...FFFFh	-	1 = 1
04.40	Event word 1	PB	0000h...FFFFh	-	1 = 1
04.41	Event word 1 bit 0 code	Data	0x2310...FFFFh	-	1 = 1
04.43	Event word 1 bit 1 code	Data	0x3210...FFFFh	-	$1=1$
$\begin{aligned} & \hline 04.45, \\ & 04.47, \\ & 04.49, \\ & \ldots \end{aligned}$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	
04.71	Event word 1 bit 15 code	Data	0x2330...FFFFh	-	1 = 1

## 05 Diagnostics

05.01	On-time counter	Real	$0 \ldots 65535$	d	$1=1 \mathrm{~d}$
05.02	Run-time counter	Real	$0 \ldots 65535$	d	$1=1 \mathrm{~d}$
05.03	Hours run	Real	$0.0 \ldots 429496729.5$	h	$10=1 \mathrm{~h}$
05.04	Fan on-time counter	Real	$0 \ldots 65535$	d	$1=1 \mathrm{~d}$
05.08	Cabinet temperature	Real	$-40 \ldots 120$	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	$10=1^{\circ}$
05.10	Control board temperature	Real	$-100 \ldots 300$	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	$10=1^{\circ}$
05.11	Inverter temperature	$R e a l$	$-40.0 \ldots 160.0$	$\%$	$10=1 \%$
05.20	Diagnostic word 1	$P B$	$0000 \mathrm{~h} \ldots \mathrm{FFFFh}$	-	
05.21	Diagnostic word 2	$P B$	$0000 \mathrm{~h} \ldots \mathrm{FFFFh}$	-	
05.22	Diagnostic word 3	$P B$	$0000 \mathrm{~h} \ldots \mathrm{FFFFh}$	-	
05.80	Motor speed at fault	$R e a l$	$-30000.00 \ldots 30000.00$	rpm	$100=1 \mathrm{rpm}$
05.81	Output frequency at fault	$R e a l$	$-500.00 \ldots 500.00$	Hz	$100=1 \mathrm{~Hz}$
05.82	DC voltage at fault	$R e a l$	$0.00 \ldots 2000.00$	V	$100=1 \mathrm{~V}$


No.	Name	Type	Range	Unit	FbEq32
05.83	Motor current at fault	Real	0.00... 30000.00	A	$100=1 \mathrm{~A}$
05.84	Motor torque at fault	Real	-1600.0...1600.0	\%	10 = 1\%
05.85	Main status word at fault	PB	0000h...FFFFh	-	$1=1$
05.86	DI delayed status at fault	$P B$	0000h...FFFFh	-	1 = 1
05.87	Inverter temperature at fault	Real	-40... 160	${ }^{\circ} \mathrm{C}$	10 = 1\%
05.88	Reference used at fault	Real	-30000.00..30000.00	Hz	$100=1 \mathrm{~Hz}$
06 Control and status words					
06.01	Main control word	$P B$	0000h...FFFFh	-	$1=1$
06.11	Main status word	$P B$	0000h...FFFFh	-	$1=1$
06.16	Drive status word 1	$P B$	0000h...FFFFh	-	$1=1$
06.17	Drive status word 2	$P B$	0000h...FFFFh	-	1 = 1
06.18	Start inhibit status word	$P B$	0000h...FFFFh	-	$1=1$
06.19	Speed control status word	$P B$	0000h...FFFFh	-	$1=1$
06.20	Constant speed status word	$P B$	0000h...FFFFh	-	$1=1$
06.21	Drive status word 3	$P B$	0000h...FFFFh	-	1 = 1
06.29	MSW bit 10 selection	Binary src	-	-	$1=1$
06.30	MSW bit 11 selection	Binary src	-	-	1 = 1
06.31	MSW bit 12 selection	Binary src	-	-	$1=1$
06.32	MSW bit 13 selection	Binary src	-	-	$1=1$
06.33	MSW bit 14 selection	Binary src	-	-	$1=1$
07 System info					
07.03	Drive rating id	List	-	-	$1=1$
07.04	Firmware name	List	-	-	$1=1$
07.05	Firmware version	Data	-	-	1 = 1
07.06	Loading package name	List	-	-	1 = 1
07.07	Loading package version	Data	-	-	$1=1$
07.10	Language file set	List	0... 3	-	1 = 1
07.11	Cpu usage	Real	0... 100	\%	1 = 1\%
07.25	Customization package name	Data	-	-	1 = 1
07.26	Customization package version	Data	-	-	$1=1$
07.30	Adaptive program status	$P B$	0000h...FFFFh	-	1 = 1
07.31	AP sequence state	Data	0... 20	-	$1=1$
07.35	Drive configuration	$P B$	0000h...FFFFh	-	$1=1$
07.36	Drive configuration 2	$P B$	0000h...FFFFh	-	1 = 1

## Parameter groups 10... 99

No.	Name	Type	Range	Unit	FbEq32
10 Standard DI, RO					
10.01	DI status	$P B$	0000h...FFFFh	-	$1=1$
10.02	DI delayed status	$P B$	0000h...FFFFh	-	$1=1$
10.03	DI force selection	$P B$	0000h...FFFFh	-	$1=1$
10.04	DI forced data	PB	0000h...FFFFh	-	1 = 1
10.05	DI1 ON delay	Real	0.00... 3000.00	S	$100=1$
10.06	DI1 OFF delay	Real	0.00... 3000.00	S	$100=1$
10.07	DI2 ON delay	Real	0.00... 3000.00	S	$100=1$
10.08	DI2 OFF delay	Real	0.00... 3000.00	S	$100=1$
10.09	DI3 ON delay	Real	0.00... 3000.00	S	$100=1$
10.10	DI3 OFF delay	Real	0.00... 3000.00	s	$100=1$
10.11	DI4 ON delay	Real	0.00... 3000.00	S	$100=1$
10.12	DI4 OFF delay	Real	0.00... 3000.00	S	$100=1$
10.13	DI5 ON delay	Real	0.00... 3000.00	S	$100=1$
10.14	DI5 OFF delay	Real	0.00... 3000.00	S	$100=1$
10.15	DI6 ON delay	Real	0.00... 3000.00	S	$100=1$
10.16	DI6 OFF delay	Real	0.00...3000.00	s	$100=1$
10.21	RO status	$P B$	0000h...FFFFh	-	1 = 1
10.22	RO force selection	$P B$	0000h...FFFFh	-	1 = 1
10.23	RO forced data	$P B$	0000h...FFFFh	-	$1=1$
10.24	RO1 source	Binary src	-	-	$1=1$
10.25	RO1 ON delay	Real	0.0...3000.0	S	$10=1 \mathrm{~s}$
10.26	RO1 OFF delay	Real	0.0..3000.0	S	$10=1 \mathrm{~s}$
10.27	RO2 source	Binary src	-	-	$1=1$
10.28	RO2 ON delay	Real	0.0...3000.0	S	$10=1 \mathrm{~s}$
10.29	RO2 OFF delay	Real	0.0...3000.0	S	$10=1 \mathrm{~s}$
10.30	RO3 source	Binary src	-	-	$1=1$
10.31	RO3 ON delay	Real	0.0..3000.0	S	$10=1 \mathrm{~s}$
10.32	RO3 OFF delay	Real	0.0...3000.0	S	$10=1 \mathrm{~s}$
10.99	RO/DIO control word	PB	0000h...FFFFh	-	$1=1$
10.101	RO1 toggle counter	Real	0...4294967000	-	$1=1$
10.102	RO2 toggle counter	Real	0... 4294967000	-	$1=1$
10.103	RO3 toggle counter	Real	0...4294967000	-	1 = 1
11 Standard DIO, FI, FO					
11.21	DI5 configuration	List	0... 1	-	1 = 1
11.38	Freq in 1 actual value	Real	0... 16000	Hz	1 = 1 Hz
11.39	Freq in 1 scaled value	Real	-32768.000..32767.000	-	$1000=1$


No.	Name	Type	Range	Unit	FbEq32
11.42	Freq in 1 min	Real	0... 16000	Hz	1 = 1 Hz
11.43	Freq in 1 max	Real	0... 16000	Hz	$1=1 \mathrm{~Hz}$
11.44	Freq in 1 at scaled min	Real	-32768.000..32767.000	-	$1000=1$
11.45	Freq in 1 at scaled max	Real	-32768.000..32767.000	-	$1000=1$
12 Standard AI					
12.02	Al force selection	$P B$	0000h...FFFFh	-	1 = 1
12.03	Al supervision function	List	0... 4	-	$1=1$
12.04	Al supervision selection	PB	0000h...FFFFh	-	1 = 1
12.11	Al1 actual value	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.12	Al1 scaled value	Real	-32768.000..32767.000	-	$1000=1$
12.13	AI1 forced value	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.15	Al1 unit selection	List	2, 10	-	1 = 1
12.16	Al1 filter time	Real	0.000.. 30.000	s	$1000=1 \mathrm{~s}$
12.17	Al1 min	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.18	Al1 max	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.19	Al1 scaled at Al1 min	Real	-32768.000...32767.000	-	$1000=1$
12.20	Al1 scaled at Al1 max	Real	-32768.000..32767.000	-	$1000=1$
12.21	Al2 actual value	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.22	Al2 scaled value	Real	-32768.000...32767.000	-	$1000=1$
12.23	AI2 forced value	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.25	AI2 unit selection	List	2, 10	-	1 = 1
12.26	Al2 filter time	Real	0.000.. 30.000	s	$1000=1 \mathrm{~s}$
12.27	Al2 min	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.28	Al2 max	Real	$\begin{gathered} 0.000 \ldots 20.000 \mathrm{~mA} \text { or } \\ 0.000 \ldots 10.000 \mathrm{~V} \end{gathered}$	mA or V	$1000=1$ unit
12.29	Al2 scaled at Al2 min	Real	-32768.000..32767.000	-	$1000=1$
12.30	Al2 scaled at Al2 max	Real	-32768.000.. 32767.000	-	$1000=1$
12.101	Al1 percent value	Real	0.00... 100.00	\%	$100=1 \%$
12.102	Al2 percent value	Real	0.00...100.00	\%	$100=1 \%$
13 Standard AO					
13.02	AO force selection	PB	0000h...FFFFh	-	$1=1$
13.11	AO1 actual value	Real	$\begin{gathered} 0.000 \ldots 22.000 \text { or } \\ 0.000 \ldots 11000 \mathrm{~V} \end{gathered}$	mA	$1000=1 \mathrm{~mA}$
13.12	AO1 source	Analog src	-	-	$1=1$
13.13	AO1 forced value	Real	$\begin{gathered} 0.000 \ldots 22.000 \text { or } \\ 0.000 \ldots 11000 \mathrm{~V} \end{gathered}$	mA	$1000=1 \mathrm{~mA}$
13.15	AO1 unit selection	List	2, 10	-	1 = 1


No.	Name	Type	Range	Unit	FbEq32
13.16	AO1 filter time	Real	0.000...30.000	S	$1000=1 \mathrm{~s}$
13.17	AO1 source min	Real	-32768.0.. 32767.0	-	$10=1$
13.18	AO1 source max	Real	-32768.0..32767.0	-	$10=1$
13.19	AO1 out at AO1 src min	Real	$\begin{aligned} & 0.000 \ldots 22.000 \text { or } \\ & 0.000 \ldots 11000 \mathrm{~V} \end{aligned}$	mA	$1000=1 \mathrm{~mA}$
13.20	AO1 out at AO1 src max	Real	$\begin{gathered} 0.000 \ldots 22.000 \text { or } \\ 0.000 \ldots 11000 \mathrm{~V} \end{gathered}$	mA	$1000=1 \mathrm{~mA}$
13.21	AO2 actual value	Real	0.000...22.000	mA	$1000=1 \mathrm{~mA}$
13.22	AO2 source	Analog src	-	-	$1=1$
13.23	AO2 forced value	Real	0.000...22.000	mA	$1000=1 \mathrm{~mA}$
13.26	AO2 filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
13.27	AO2 source min	Real	-32768.0.. 32767.0	-	$10=1$
13.28	AO2 source max	Real	-32768.0... 32767.0	-	$10=1$
13.29	AO2 out at AO2 src min	Real	0.000... 22.000	mA	$1000=1 \mathrm{~mA}$
13.30	AO2 out at AO2 src max	Real	0.000...22.000	mA	$1000=1 \mathrm{~mA}$
13.91	AO1 data storage	Real	-327.68...327.67	-	$100=1$
13.92	AO2 data storage	Real	-327.68...327.67	-	$100=1$
$15 \mathrm{I} / \mathrm{O}$ extension module					
15.01	Extension module type	List	0... 4	-	$1=1$
15.02	Detected extension module	List	0... 4	-	$1=1$
15.03	DI status	$P B$	0000h...FFFFh	-	$1=1$
15.04	RO/DO status	$P B$	0000h...FFFFh	-	$1=1$
15.05	RO/DO force selection	$P B$	0000h...FFFFh	-	$1=1$
15.06	RO/DO forced data	PB	0000h...FFFFh	-	$1=1$
15.07	RO4 source	Binary src	-	-	$1=1$
15.08	RO4 ON delay	Real	0.0..3000.0	s	$10=1 \mathrm{~s}$
15.09	RO4 OFF delay	Real	0.0...3000.0	s	$10=1 \mathrm{~s}$
15.10	RO5 source	Binary src	-	-	$1=1$
15.11	RO5 ON delay	Real	0.0...3000.0	S	$10=1 \mathrm{~s}$
15.12	RO5 OFF delay	Real	0.0.. 3000.0	S	$10=1 \mathrm{~s}$
15.22	DO1 configuration	List	0, 2	-	$1=1$
15.23	DO1 source	Binary src	-	-	$1=1$
15.24	DO1 ON delay	Real	0.0..3000.0	S	$10=1 \mathrm{~s}$
15.25	DO1 OFF delay	Real	0.0.. 3000.0	s	$10=1 \mathrm{~s}$
15.32	Freq out 1 actual value	Real	0... 16000	Hz	1 = 1 Hz
15.33	Freq out 1 source	Analog src	-	-	1 = 1
15.34	Freq out 1 src min	Real	-32768.0..32767.0	-	$1000=1$
15.35	Freq out 1 src max	Real	-32768.0...32767.0	-	$1000=1$


No.	Name	Type	Range	Unit	FbEq32
15.36	Freq out 1 at src min	Real	0... 16000	Hz	$1=1 \mathrm{~Hz}$
15.37	Freq out 1 at src max	Real	0... 16000	Hz	$1=1 \mathrm{~Hz}$
19 Operation mode					
19.01	Actual operation mode	List	1...6, 10, 20	-	1 = 1
19.11	Ext1/Ext2 selection	Binary src	-	-	$1=1$
19.12	Ext1 control mode	List	1... 5	-	1 = 1
19.14	Ext2 control mode	List	1... 5	-	1 = 1
19.16	Local control mode	List	0... 1	-	$1=1$
19.17	Local control disable	List	0... 1	-	1 = 1
20 Start/stop/direction					
20.01	Ext1 commands	List	$0 . . .6,11 \ldots 12,14$	-	1 = 1
20.02	Ext1 start trigger type	List	0... 1	-	$1=1$
20.03	Ext1 in1 source	Binary src	-	-	$1=1$
20.04	Ext1 in2 source	Binary src	-	-	$1=1$
20.05	Ext1 in3 source	Binary src	-	-	$1=1$
20.06	Ext2 commands	List	$0 . . .6,11 \ldots 12,14$	-	1 = 1
20.07	Ext2 start trigger type	List	0... 1	-	$1=1$
20.08	Ext2 in1 source	Binary src	-	-	1 = 1
20.09	Ext2 in2 source	Binary src	-	-	1 = 1
20.10	Ext2 in3 source	Binary src	-	-	1 = 1
20.11	Run enable stop mode	List	0... 2	-	1 = 1
20.12	Run enable 1 source	Binary src	-	-	$1=1$
20.19	Enable start command	Binary src	-	-	$1=1$
20.21	Direction	List	0... 2	-	1 = 1
20.22	Enable to rotate	Binary src	-	-	$1=1$
20.25	Jogging enable	Binary src	-	-	$1=1$
20.26	Jogging 1 start source	Binary src	-	-	$1=1$
20.27	Jogging 2 start source	Binary src	-	-	$1=1$
20.30	Enable signal warning function	$P B$	0000h...FFFFh	-	1 = 1
21 Start/stop mode					
21.01	Start mode	List	0... 2	-	1 = 1
21.02	Magnetization time	Real	0... 10000	ms	1 = 1 ms


No.	Name	Type	Range	Unit	FbEq32
21.03	Stop mode	List	0... 2	-	1 = 1
21.04	Emergency stop mode	List	0... 2	-	1 = 1
21.05	Emergency stop source	Binary src	-	-	$1=1$
21.06	Zero speed limit	Real	0.00... 30000.00	rpm	100 = 1 rpm
21.07	Zero speed delay	Real	0... 30000	ms	$1=1 \mathrm{~ms}$
21.08	DC current control	$P B$	0000b...0011b	-	1 = 1
21.09	DC hold speed	Real	0.00... 1000.00	rpm	$100=1 \mathrm{rpm}$
21.10	DC current reference	Real	0.0... 100.0	\%	10 = 1\%
21.11	Post magnetization time	Real	0... 3000	S	$1=1 \mathrm{~s}$
21.14	Pre-heating input source	Binary src	-	-	$1=1$
21.15	Pre-heating time delay	Real	10... 3000	s	$1=1 \mathrm{~s}$
21.16	Pre-heating current	Real	0.0.. 30.0	\%	$10=1 \%$
21.18	Auto restart time	Real	0.0, 0.1..10.0	S	$10=1 \mathrm{~s}$
21.19	Scalar start mode	List	0... 6	-	$1=1$
21.21	DC hold frequency	Real	0.00... 1000.00	Hz	$100=1 \mathrm{~Hz}$
21.22	Start delay	Real	0.00...60.00	s	$100=1 \mathrm{~s}$
21.23	Smooth start	Real	0... 2	-	$1=1$
21.24	Smooth start current	Real	10.0... 200.0	\%	$100=1 \%$
21.25	Smooth start speed	Real	2.0... 100.0	\%	$100=1 \%$
21.26	Torque boost current	Real	15.0...300.0	\%	$100=1 \%$
21.27	Torque boost time	Real	0.0...60.0	s	$10=1 \mathrm{~s}$
21.30	Speed compensated stop mode	Real	0... 3	-	$1=1$
21.31	Speed comp stop delay	Real	0.00... 1000.00	s	$100=1 \mathrm{~s}$
21.32	Speed comp stop threshold	Real	0... 100	\%	1 = 1\%
21.34	Force auto restart	List	0... 1	-	1 = 1
21.35	Preheating power	Real	0.00... 10.00	kW	$100=1 \mathrm{~kW}$
21.36	Preheating unit	List	0... 1	-	1 = 1
22 Speed reference selection					
22.01	Speed ref unlimited	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.11	Ext1 speed ref1	Analog src	-	-	$1=1$
22.12	Ext1 speed ref2	Analog src	-	-	$1=1$
22.13	Ext1 speed function	List	0... 5	-	1 = 1
22.18	Ext2 speed ref1	Analog src	-	-	$1=1$
22.19	Ext2 speed ref2	Analog src	-	-	$1=1$
22.20	Ext2 speed function	List	0... 5	-	1 = 1
22.21	Constant speed function	$P B$	0000h...FFFFh	-	1 = 1


No.	Name	Type	Range	Unit	FbEq32
22.22	Constant speed sel1	Binary src	-	-	1 = 1
22.23	Constant speed sel2	Binary src	-	-	$1=1$
22.24	Constant speed sel3	Binary src	-	-	$1=1$
22.26	Constant speed 1	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.27	Constant speed 2	Real	-30000.00.. 30000.00	rpm	$100=1 \mathrm{rpm}$
22.28	Constant speed 3	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.29	Constant speed 4	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.30	Constant speed 5	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.31	Constant speed 6	Real	-30000.00.. 30000.00	rpm	$100=1 \mathrm{rpm}$
22.32	Constant speed 7	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.41	Speed ref safe	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.42	Jogging 1 ref	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.43	Jogging 2 ref	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.51	Critical speed function	PB	00b...11b	-	1 = 1
22.52	Critical speed 1 low	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.53	Critical speed 1 high	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.54	Critical speed 2 low	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.55	Critical speed 2 high	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.56	Critical speed 3 low	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.57	Critical speed 3 high	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
22.71	Motor potentiometer function	List	0... 3	-	1 = 1
22.72	Motor potentiometer initial value	Real	-32768.00.. 32767.00	-	$100=1$
22.73	Motor potentiometer up source	Binary src	-	-	1 = 1
22.74	Motor potentiometer down source	Binary src	-	-	$1=1$
22.75	Motor potentiometer ramp time	Real	0.0..3600.0	S	$10=1 \mathrm{~s}$
22.76	Motor potentiometer min value	Real	-32768.00.. 32767.00	-	$100=1$
22.77	Motor potentiometer max value	Real	-32768.00.. 32767.00	-	$100=1$
22.80	Motor potentiometer ref act	Real	-32768.00...32767.00	-	$100=1$
22.86	Speed reference act 6	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
22.87	Speed reference act 7	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
23 Speed reference ramp					
23.01	Speed ref ramp input	Real	-30000.00...30000.00	rpm	$100=1 \mathrm{rpm}$
23.02	Speed ref ramp output	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
23.11	Ramp set selection	Binary src	-	-	$1=1$
23.12	Acceleration time 1	Real	0.000...1800.000	S	$1000=1 \mathrm{~s}$
23.13	Deceleration time 1	Real	0.000... 1800.000	S	$1000=1 \mathrm{~s}$


No.	Name	Type	Range	Unit	FbEq32
23.14	Acceleration time 2	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$
23.15	Deceleration time 2	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$
23.20	Acc time jogging	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$
23.21	Dec time jogging	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$
23.23	Emergency stop time	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$
23.28	Variable slope enable	List	$0 \ldots 1$	-	$1=1$
23.29	Variable slope rate	Real	$2 \ldots 30000$	ms	$1=1 \mathrm{~ms}$
23.32	Shape time 1	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$
23.33	Shape time 2	Real	$0.000 \ldots 1800.000$	s	$1000=1 \mathrm{~s}$

24 Speed reference conditioning

24.01	Used speed reference	Real	$-30000.00 \ldots 30000.00$	rpm	$100=1 \mathrm{rpm}$
24.02	Used speed feedback	Real	$-30000.00 \ldots 30000.00$	rpm	$100=1 \mathrm{rpm}$
24.03	Speed error filtered	Real	$-30000.0 \ldots 30000.0$	rpm	$100=1 \mathrm{rpm}$
24.04	Speed error inverted	Real	$-30000.0 \ldots 30000.0$	rpm	$100=1 \mathrm{rpm}$
24.11	Speed correction	Real	$-10000.00 \ldots 10000.00$	rpm	$100=1 \mathrm{rpm}$
24.12	Speed error filter time	Real	$0 \ldots 10000$	ms	$1=1 \mathrm{~ms}$

## 25 Speed control

25.01	Torque reference speed   control	Real	$-1600.0 \ldots 1600.0$	$\%$	$10=1 \%$
25.02	Speed proportional gain	Real	$0.00 \ldots 250.00$	-	$100=1$
25.03	Speed integration time	Real	$0.00 \ldots 1000.00$	s	$1000=1 \mathrm{~s}$
25.04	Speed derivation time	Real	$0.000 \ldots 10.000$	s	$1000=1 \mathrm{~s}$
25.05	Derivation filter time	Real	$0 \ldots 10000$	ms	$1=1 \mathrm{~ms}$
25.06	Acc comp derivation time	Real	$0.00 \ldots 1000.00$	s	$100=1 \mathrm{~s}$
25.07	Acc comp filter time	Real	$0.0 \ldots 1000.0$	ms	$10=1 \mathrm{~ms}$
25.15	Proportional gain em stop	Real	$1.00 \ldots 250.00$	-	$100=1$
25.33	Speed controller autotune	List	$0 \ldots 1$	-	$1=1$
25.34	Speed controller autotune   mode	List	$0 \ldots 2$	-	$1=1$
25.37	Mechanical time constant	Real	$0.00 \ldots 1000.00$	s	$100=1 \mathrm{~s}$
25.38	Autotune torque step	Real	$0.00 \ldots 100.00$	$\%$	$100=1 \%$
25.39	Autotune speed step	Real	$0.00 \ldots 100.00$	$\%$	$100=1 \%$
25.40	Autotune repeat times	Real	$1 \ldots 10$	-	$1=1$
25.53	Torque prop reference	Real	$-30000.0 \ldots 30000.0$	$\%$	$10=1 \%$
25.54	Torque integral reference	Real	$-30000.0 \ldots 30000.0$	$\%$	$10=1 \%$
25.55	Torque deriv reference	Real	$-30000.0 \ldots 30000.0$	$\%$	$10=1 \%$
25.56	Torque acc compensation	Real	$-30000.0 \ldots 30000.0$	$\%$	$10=1 \%$
$26 T 0$ rqu	reren				

26 Torque reference chain

26.01	Torque reference to TC	Real	$-1600.0 \ldots 1600.0$	$\%$	$10=1 \%$
26.02	Torque reference used	Real	$-1600.0 \ldots 1600.0$	$\%$	$10=1 \%$
26.08	Minimum torque ref	Real	$-1000.0 \ldots 0.0$	$\%$	$10=1 \%$


No.	Name	Type	Range	Unit	FbEq32
26.09	Maximum torque ref	Real	0.0... 1000.0	\%	10 = 1\%
26.11	Torque ref1 source	Analog src	-	-	$1=1$
26.12	Torque ref2 source	Analog src	-	-	$1=1$
26.13	Torque ref1 function	List	0... 5	-	1 = 1
26.14	Torque ref1/2 selection	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
26.17	Torque ref filter time	Real	0.000..30.000	s	$1000=1 \mathrm{~s}$
26.18	Torque ramp up time	Real	0.000...60.000	S	$1000=1 \mathrm{~s}$
26.19	Torque ramp down time	Real	0.000...60.000	s	$1000=1 \mathrm{~s}$
26.20	Torque reversal	List	0...7, 18...20, 24... 26	-	$1=1$
26.70	Torque reference act 1	Real	-1600.0..1600.0	\%	$10=1 \%$
26.71	Torque reference act 2	Real	-1600.0...1600.0	\%	$10=1 \%$
26.72	Torque reference act 3	Real	-1600.0...1600.0	\%	10 = 1\%
26.73	Torque reference act 4	Real	-1600.0...1600.0	\%	10 = 1\%
26.74	Torque ref ramp out	Real	-1600.0...1600.0	\%	10 = 1\%
26.75	Torque reference act 5	Real	-1600.0...1600.0	\%	10 = 1\%
26.76	Torque reference act 6	Real	-1600.0..1600.0	\%	10 = 1\%
26.81	Rush control gain	Real	0.0... 10000.0	-	$10=1$
26.82	Rush control integration time	Real	0.0...10.0	s	$10=1$
28 Frequency reference chain					
28.01	Frequency ref ramp input	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.02	Frequency ref ramp output	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.11	Ext1 frequency ref1	Analog src	-	-	1 = 1
28.12	Ext1 frequency ref2	Analog src	-	-	1 = 1
28.13	Ext1 frequency function	List	0... 5	-	1 = 1
28.15	Ext2 frequency ref1	Analog src	-	-	$1=1$
28.16	Ext2 frequency ref2	Analog src	-	-	1 = 1
28.17	Ext2 frequency function	List	0... 5	-	1 = 1
28.21	Constant frequency function	PB	00b...11b	-	$1=1$
28.22	Constant frequency sel1	Binary src	-	-	$1=1$
28.23	Constant frequency sel2	Binary src	-	-	$1=1$
28.24	Constant frequency sel3	Binary src	-	-	$1=1$
28.26	Constant frequency 1	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.27	Constant frequency 2	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.28	Constant frequency 3	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$


No.	Name	Type	Range	Unit	FbEq32
28.29	Constant frequency 4	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.30	Constant frequency 5	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.31	Constant frequency 6	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.32	Constant frequency 7	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.41	Frequency ref safe	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.42	Jogging 1 frequency ref	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.43	Jogging 2 frequency ref	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.51	Critical frequency function	PB	00b...11b	-	$1=1$
28.52	Critical frequency 1 low	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.53	Critical frequency 1 high	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.54	Critical frequency 2 low	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.55	Critical frequency 2 high	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.56	Critical frequency 3 low	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.57	Critical frequency 3 high	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.71	Freq ramp set selection	Binary src	-	-	$1=1$
28.72	Freq acceleration time 1	Real	0.000...1800.000	S	$1000=1 \mathrm{~s}$
28.73	Freq deceleration time 1	Real	0.000... 1800.000	S	$1000=1 \mathrm{~s}$
28.74	Freq acceleration time 2	Real	0.000... 1800.000	S	$1000=1 \mathrm{~s}$
28.75	Freq deceleration time 2	Real	0.000... 1800.000	s	$1000=1 \mathrm{~s}$
28.76	Freq ramp in zero source	Binary src	-	-	$1=1$
28.82	Shape time 1	Real	0.000... 1800.000	S	$1000=1 \mathrm{~s}$
28.83	Shape time 2	Real	0.000... 1800.000	s	$1000=1 \mathrm{~s}$
28.92	Frequency ref act 3	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
28.96	Frequency ref act 7	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
28.97	Frequency ref unlimited	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
30 Limits					
30.01	Limit word 1	$P B$	0000h...FFFFh	-	$1=1$
30.02	Torque limit status	$P B$	0000h...FFFFh	-	$1=1$
30.11	Minimum speed	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
30.12	Maximum speed	Real	-30000.00..30000.00	rpm	$100=1 \mathrm{rpm}$
30.13	Minimum frequency	Real	-500.00..500.00	Hz	$100=1 \mathrm{~Hz}$
30.14	Maximum frequency	Real	-500.00...500.00	Hz	$100=1 \mathrm{~Hz}$
30.17	Maximum current	Real	0.00...30000.00	A	$100=1 \mathrm{~A}$
30.18	Torq lim sel	Binary src	-	-	$1=1$
30.19	Minimum torque 1	Real	-1600.0...0.0	\%	$10=1 \%$
30.20	Maximum torque 1	Real	0.0...1600.0	\%	$10=1 \%$
30.21	Min torque 2 source	Analog src	-	-	$1=1$
30.22	Max torque 2 source	Analog src	-	-	$1=1$


No.	Name	Type	Range	Unit	FbEq32
30.23	Minimum torque 2	Real	-1600.0...0.0	\%	10 = 1\%
30.24	Maximum torque 2	Real	0.0... 1600.0	\%	$10=1 \%$
30.26	Power motoring limit	Real	0.00...600.00	\%	$100=1 \%$
30.27	Power generating limit	Real	-600.00...0.00	\%	$100=1 \%$
30.30	Overvoltage control	List	0... 1	-	1 = 1
30.31	Undervoltage control	List	0... 1	-	1 = 1
30.35	Thermal current limitation	List	0... 1	-	$1=1$
30.36	Speed limit selection	Binary src	-	-	$1=1$
30.37	Minimum speed source	Analog src	-	-	$1=1$
30.38	Maximum speed source	Analog src	-	-	$1=1$
31 Fault functions					
31.01	External event 1 source	Binary src	-	-	$1=1$
31.02	External event 1 type	List	0... 1	-	$1=1$
31.03	External event 2 source	Binary src	-	-	$1=1$
31.04	External event 2 type	List	0... 1	-	1 = 1
31.05	External event 3 source	Binary src	-	-	$1=1$
31.06	External event 3 type	List	0... 1	-	1 = 1
31.07	External event 4 source	Binary src	-	-	$1=1$
31.08	External event 4 type	List	0... 1	-	$1=1$
31.09	External event 5 source	Binary src	-	-	$1=1$
31.10	External event 5 type	List	0... 1	-	1 = 1
31.11	Fault reset selection	Binary src	-	-	1 = 1
31.12	Autoreset selection	$P B$	0000h...FFFFh	-	1 = 1
31.13	Selectable fault	Real	0000h...FFFFh	-	$1=1$
31.14	Number of trials	Real	0... 5	-	1 = 1
31.15	Total trials time	Real	1.0...600.0	S	$10=1 \mathrm{~s}$
31.16	Delay time	Real	0.0...120.0	S	$10=1 \mathrm{~s}$
31.19	Motor phase loss	List	0... 1	-	1 = 1
31.21	Supply phase loss	List	0... 1	-	1 = 1
31.22	STO indication run/stop	List	0... 5	-	1 = 1
31.23	Wiring or earth fault	List	0... 1	-	1 = 1
31.24	Stall function	List	0... 1	-	1 = 1
31.25	Stall current limit	Real	0.0...1600.0	\%	10 = 1\%
31.26	Stall speed limit	Real	0.00... 10000.00	rpm	$100=1 \mathrm{rpm}$
31.27	Stall frequency limit	Real	0.00...1000.00	Hz	$100=1 \mathrm{~Hz}$


No.	Name	Type	Range	Unit	FbEq32
31.28	Stall time	Real	0... 3600	s	$1=1 \mathrm{~s}$
31.30	Overspeed trip margin	Real	0.00... 10000.00	rpm	$100=1 \mathrm{rpm}$
31.31	Frequency trip margin	Real	0.00...10000.0	Hz	$100=1 \mathrm{~Hz}$
31.32	Emergency ramp supervision	Real	0... 300	\%	1 = 1\%
31.33	Emergency ramp supervision delay	Real	0... 100	S	$1=1 \mathrm{~s}$
31.35	Main fan fault function	List	0... 2	-	1 = 1
31.36	Aux fan fault function	List	0... 2	-	$1=1$
31.40	Disable warning messages	$P B$	0000h...FFFFh	-	1 = 1
31.54	Fault action	List	0... 1	-	$1=1$
32 Supervision					
32.01	Supervision status	$P B$	0000h...FFFFh	-	1 = 1
32.05	Supervision 1 function	List	0... 7	-	1 = 1
32.06	Supervision 1 action	List	0... 3	-	$1=1$
32.07	Supervision 1 signal	Analog src	-	-	$1=1$
32.08	Supervision 1 filter time	Real	0.000..30.000	s	$1000=1 \mathrm{~s}$
32.09	Supervision 1 low	Real	$\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.10	Supervision 1 high	Real	$\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.11	Supervision 1 hysteresis	Real	0.00...100000.00	-	$100=1$
32.15	Supervision 2 function	List	0... 7	-	$1=1$
32.16	Supervision 2 action	List	0... 3	-	$1=1$
32.17	Supervision 2 signal	Analog src	-	-	$1=1$
32.18	Supervision 2 filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
32.19	Supervision 2 low	Real	$\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.20	Supervision 2 high	Real	$\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.21	Supervision 2 hysteresis	Real	0.00...100000.00	-	$100=1$
32.25	Supervision 3 function	List	0... 7	-	$1=1$
32.26	Supervision 3 action	List	0... 3	-	1 = 1
32.27	Supervision 3 signal	Analog src	-	-	$1=1$
32.28	Supervision 3 filter time	Real	0.000...30.000	S	$1000=1 \mathrm{~s}$
32.29	Supervision 3 low	Real	$\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.30	Supervision 3 high	Real	$\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.31	Supervision 3 hysteresis	Real	0.00... 100000.00	-	$100=1$
32.35	Supervision 4 function	List	0... 7	-	$1=1$
32.36	Supervision 4 action	List	0... 3	-	1 = 1


No.	Name	Type	Range	Unit	FbEq32
32.37	Supervision 4 signal	Analog src	-	-	1 = 1
32.38	Supervision 4 filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
32.39	Supervision 4 low	Real	$\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.40	Supervision 4 high	Real	$\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.41	Supervision 4 hysteresis	Real	0.00... 100000.00	-	$100=1$
32.45	Supervision 5 function	List	0... 7	-	$1=1$
32.46	Supervision 5 action	List	0... 3	-	$1=1$
32.47	Supervision 5 signal	Analog src	-	-	$1=1$
32.48	Supervision 5 filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
32.49	Supervision 5 low	Real	$\begin{gathered} -21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.50	Supervision 5 high	Real	$\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.51	Supervision 5 hysteresis	Real	0.00... 100000.00	-	$100=1$
32.55	Supervision 6 function	List	0... 7	-	$1=1$
32.56	Supervision 6 action	List	0... 3	-	$1=1$
32.57	Supervision 6 signal	Analog src	-	-	$1=1$
32.58	Supervision 6 filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
32.59	Supervision 6 low	Real	$\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.60	Supervision 6 high	Real	$\begin{gathered} \hline-21474836.00 \ldots \\ 21474836.00 \end{gathered}$	-	$100=1$
32.61	Supervision 6 hysteresis	Real	0.00... 100000.00	-	$100=1$
34 Timed functions					
34.01	Timed functions status	$P B$	0000h...FFFFh	-	1 = 1
34.02	Timer status	$P B$	0000h...FFFFh	-	$1=1$
34.04	Season/exception day status	$P B$	0000h...FFFFh	-	1 = 1
34.10	Timed functions enable	Binary src	-	-	$1=1$
34.11	Timer 1 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.12	Timer 1 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.13	Timer 1 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.14	Timer 2 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.15	Timer 2 start time	Time	00:00:00...23:59:59	S	$1=1 \mathrm{~s}$
34.16	Timer 2 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.17	Timer 3 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.18	Timer 3 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.19	Timer 3 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.20	Timer 4 configuration	$P B$	0000h...FFFFh	-	1 = 1


No.	Name	Type	Range	Unit	FbEq32
34.21	Timer 4 start time	Time	00:00:00...23:59:59	S	$1=1 \mathrm{~s}$
34.22	Timer 4 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.23	Timer 5 configuration	$P B$	0000h...FFFFh	-	$1=1$
34.24	Timer 5 start time	Time	00:00:00...23:59:59	S	$1=1 \mathrm{~s}$
34.25	Timer 5 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.26	Timer 6 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.27	Timer 6 start time	Time	00:00:00...23:59:59	S	$1=1 \mathrm{~s}$
34.28	Timer 6 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.29	Timer 7 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.30	Timer 7 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.31	Timer 7 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.32	Timer 8 configuration	PB	0000h...FFFFh	-	1 = 1
34.33	Timer 8 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.34	Timer 8 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.35	Timer 9 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.36	Timer 9 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.37	Timer 9 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.38	Timer 10 configuration	$P B$	0000h...FFFFh	-	1 = 1
34.39	Timer 10 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.40	Timer 10 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.41	Timer 11 configuration	PB	0000h...FFFFh	-	1 = 1
34.42	Timer 11 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.43	Timer 11 duration	Duration	00 00:00... 07 00:00	min	1 = 1 min
34.44	Timer 12 configuration	PB	0000h...FFFFh	-	$1=1$
34.45	Timer 12 start time	Time	00:00:00...23:59:59	s	$1=1 \mathrm{~s}$
34.46	Timer 12 duration	Duration	0000:00... 07 00:00	min	1 = 1 min
34.60	Season 1 start date	Date	01.01..31.12	d	1 = 1 d
34.61	Season 2 start date	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.62	Season 3 start date	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.63	Season 4 start date	Date	01.01..31.12	d	$1=1 \mathrm{~d}$
34.70	Number of active exceptions	Real	0... 16	-	$1=1$
34.71	Exception types	PB	0000h...FFFFh	-	1 = 1
34.72	Exception 1 start	Date	01.01...31.12	d	1 = 1 d
34.73	Exception 1 length	Real	0... 60	d	1 = 1 d
34.74	Exception 2 start	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.75	Exception 2 length	Real	0... 60	d	$1=1 \mathrm{~d}$
34.76	Exception 3 start	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.77	Exception 3 length	Real	0... 60	d	$1=1 \mathrm{~d}$
34.78	Exception day 4	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.79	Exception day 5	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.80	Exception day 6	Date	01.01...31.12	d	1 = 1 d


No.	Name	Type	Range	Unit	FbEq32
34.81	Exception day 7	Date	01.01...31.12	d	1 = 1 d
34.82	Exception day 8	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.83	Exception day 9	Date	01.01...31.12	d	1 = 1 d
34.84	Exception day 10	Date	01.01...31.12	d	1 = 1 d
34.85	Exception day 11	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.86	Exception day 12	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.87	Exception day 13	Date	01.01...31.12	d	1 = 1 d
34.88	Exception day 14	Date	01.01...31.12	d	1 = 1 d
34.89	Exception day 15	Date	01.01...31.12	d	$1=1 \mathrm{~d}$
34.90	Exception day 16	Date	01.01...31.12	d	1 = 1 d
34.100	Timed function 1	$P B$	0000h...FFFFh	-	1 = 1
34.101	Timed function 2	$P B$	0000h...FFFFh	-	1 = 1
34.102	Timed function 3	$P B$	0000h...FFFFh	-	1 = 1
34.110	Boost time function	$P B$	0000h...FFFFh	-	1 = 1
34.111	Boost time activation source	Binary src	-	-	$1=1$
34.112	Boost time duration	Duration	00 00:00... 07 00:00	min	1 = 1 min
35 Motor thermal protection					
35.01	Motor estimated temperature	Real	$\begin{gathered} -60 \ldots 1000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 1832^{\circ} \mathrm{F} \end{gathered}$	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	$1=1^{\circ}$
35.02	Measured temperature 1	Real	$\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 9032^{\circ} \mathrm{F}, \\ 0 \text { ohm or } \\ {[35.12] \text { ohm }} \end{gathered}$	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or ohm	1 = 1 unit
35.03	Measured temperature 2	Real	$\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots . .9032^{\circ} \mathrm{F}, \\ 0 \text { ohm or } \\ {[35.22] \text { ohm }} \end{gathered}$	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or ohm	1 = 1 unit
35.05	Motor overload level	Real	0.0...300.0	\%	$10=1 \%$
35.11	Temperature 1 source	List	$\begin{gathered} 0 \ldots 2,5 \ldots 8,11 \ldots 16,19,21 \\ 22 \end{gathered}$	-	$1=1$
35.12	Temperature 1 fault limit	Real	$\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 9032^{\circ} \mathrm{F} \end{gathered}$	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or ohm	1 = 1 unit
35.13	Temperature 1 warning limit	Real	$\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 9032^{\circ} \mathrm{F} \end{gathered}$	${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$ or ohm	1 = 1 unit
35.14	Temperature 1 Al source	Analog src	-	-	$1=1$
35.21	Temperature 2 source	List	0...2, 5...7, 11...16, 19	-	1 = 1
35.22	Temperature 2 fault limit	Real	$\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 9032^{\circ} \mathrm{F} \end{gathered}$	${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$ or ohm	1 = 1 unit
35.23	Temperature 2 warning limit	Real	$\begin{gathered} -60 \ldots 5000^{\circ} \mathrm{C} \text { or } \\ -76 \ldots 9032^{\circ} \mathrm{F} \end{gathered}$	${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or ohm	1 = 1 unit
35.24	Temperature 2 Al source	Analog src	-	-	$1=1$
35.31	Safe motor temperature enable	List	0... 1	-	1 = 1

$\qquad$

No.	Name	Type	Range	Unit	FbEq32
35.50	Motor ambient temperature	Real	$\begin{aligned} & -60 \ldots 100{ }^{\circ} \mathrm{C} \text { or } \\ & -76 \ldots 212^{\circ} \mathrm{F} \end{aligned}$	${ }^{\circ} \mathrm{C}$	$1=1^{\circ}$
35.51	Motor load curve	Real	50... 150	\%	1 = 1\%
35.52	Zero speed load	Real	25... 150	\%	1 = 1\%
35.53	Break point	Real	$1.00 \ldots 500.00$	Hz	$100=1 \mathrm{~Hz}$
35.54	Motor nominal temperature rise	Real	$0 \ldots .300{ }^{\circ} \mathrm{C}$ or $32 \ldots .572{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	$1=1^{\circ}$
35.55	Motor thermal time constant	Real	100... 10000	s	$1=1 \mathrm{~s}$
35.56	Motor overload action	List	0... 1	-	1 = 1
35.57	Motor overload class	List	0...4	-	1 = 1
36 Load analyzer					
36.01	PVL signal source	Analog src	-	-	$1=1$
36.02	PVL filter time	Real	0.00... 120.00	s	$100=1 \mathrm{~s}$
36.06	AL2 signal source	Analog src	-	-	$1=1$
36.07	AL2 signal scaling	Real	0.00... 32767.00	-	$100=1$
36.09	Reset loggers	List	0... 3	-	1 = 1
36.10	PVL peak value	Real	-32768.00...32767.00	-	$100=1$
36.11	PVL peak date	Data	-	-	$1=1$
36.12	PVL peak time	Data	-	-	$1=1$
36.13	PVL current at peak	Real	-32768.00...32767.00	A	$100=1 \mathrm{~A}$
36.14	PVL DC voltage at peak	Real	0.00... 2000.00	V	$100=1 \mathrm{~V}$
36.15	PVL speed at peak	Real	-30000.00... 30000.00	rpm	$100=1 \mathrm{rpm}$
36.16	PVL reset date	Data	-	-	1 = 1
36.17	PVL reset time	Data	-	-	1 = 1
36.20	AL1 0 to 10\%	Real	0.00... 100.00	\%	$100=1 \%$
36.21	AL1 10 to 20\%	Real	0.00... 100.00	\%	$100=1 \%$
36.22	AL1 20 to 30\%	Real	0.00...100.00	\%	$100=1 \%$
36.23	AL1 30 to 40\%	Real	0.00... 100.00	\%	$100=1 \%$
36.24	AL1 40 to 50\%	Real	0.00... 100.00	\%	$100=1 \%$
36.25	AL1 50 to 60\%	Real	0.00... 100.00	\%	$100=1 \%$
36.26	AL1 60 to 70\%	Real	0.00... 100.00	\%	$100=1 \%$
36.27	AL1 70 to 80\%	Real	0.00... 100.00	\%	$100=1 \%$
36.28	AL1 80 to 90\%	Real	0.00... 100.00	\%	$100=1 \%$
36.29	AL1 over 90\%	Real	0.00... 100.00	\%	$100=1 \%$
36.40	AL2 0 to 10\%	Real	0.00... 100.00	\%	$100=1 \%$
36.41	AL2 10 to 20\%	Real	0.00... 100.00	\%	$100=1 \%$
36.42	AL2 20 to 30\%	Real	0.00... 100.00	\%	$100=1 \%$
36.43	AL2 30 to 40\%	Real	0.00... 100.00	\%	$100=1 \%$
36.44	AL2 40 to 50\%	Real	0.00... 100.00	\%	$100=1 \%$
36.45	AL2 50 to 60\%	Real	0.00...100.00	\%	$100=1 \%$


No.	Name	Type	Range	Unit	FbEq32
36.46	AL2 60 to 70\%	Real	0.00... 100.00	\%	$100=1 \%$
36.47	AL2 70 to 80\%	Real	0.00... 100.00	\%	$100=1 \%$
36.48	AL2 80 to 90\%	Real	0.00... 100.00	\%	$100=1 \%$
36.49	AL2 over 90\%	Real	0.00... 100.00	\%	$100=1 \%$
36.50	AL2 reset date	Data	-	-	1 = 1
36.51	AL2 reset time	Data	-	-	1 = 1
37 User load curve					
37.01	ULC output status word	PB	0000h...FFFFh	-	1 = 1
37.02	ULC supervision signal	Analog src	-	-	$1=1$
37.03	ULC overload actions	List	0... 3	-	1 = 1
37.04	ULC underload actions	List	0... 3	-	1 = 1
37.11	ULC speed table point 1	Real	-30000.0...30000.0	rpm	$10=1 \mathrm{rpm}$
37.12	ULC speed table point 2	Real	-30000.0...30000.0	rpm	$10=1 \mathrm{rpm}$
37.13	ULC speed table point 3	Real	-30000.0...30000.0	rpm	$10=1 \mathrm{rpm}$
37.14	ULC speed table point 4	Real	-30000.0...30000.0	rpm	$10=1 \mathrm{rpm}$
37.15	ULC speed table point 5	Real	-30000.0...30000.0	rpm	$10=1 \mathrm{rpm}$
37.16	ULC frequency table point 1	Real	-500.0..500.0	Hz	$10=1 \mathrm{~Hz}$
37.17	ULC frequency table point 2	Real	-500.0..500.0	Hz	$10=1 \mathrm{~Hz}$
37.18	ULC frequency table point 3	Real	-500.0..500.0	Hz	$10=1 \mathrm{~Hz}$
37.19	ULC frequency table point 4	Real	-500.0..500.0	Hz	$10=1 \mathrm{~Hz}$
37.20	ULC frequency table point 5	Real	-500.0...500.0	Hz	$10=1 \mathrm{~Hz}$
37.21	ULC underload point 1	Real	-1600.0...1600.0	\%	10 = 1\%
37.22	ULC underload point 2	Real	-1600.0...1600.0	\%	10 = 1\%
37.23	ULC underload point 3	Real	-1600.0...1600.0	\%	$10=1 \%$
37.24	ULC underload point 4	Real	-1600.0...1600.0	\%	$10=1 \%$
37.25	ULC underload point 5	Real	-1600.0...1600.0	\%	10 = 1\%
37.31	ULC overload point 1	Real	-1600.0...1600.0	\%	10 = 1\%
37.32	ULC overload point 2	Real	-1600.0...1600.0	\%	10 = 1\%
37.33	ULC overload point 3	Real	-1600.0...1600.0	\%	10 = 1\%
37.34	ULC overload point 4	Real	-1600.0...1600.0	\%	10 = 1\%
37.35	ULC overload point 5	Real	-1600.0...1600.0	\%	10 = 1\%
37.41	ULC overload timer	Real	0.0... 10000.0	S	$10=1 \mathrm{~s}$
37.42	ULC underload timer	Real	0.0... 10000.0	S	$10=1 \mathrm{~s}$
40 Process PID set 1					
40.01	Process PID output actual	Real	-200000.00..200000.00	\%	$100=1 \text { PID }$   customer unit
40.02	Process PID feedback actual	Real	-200000.00...200000.00	PID customer units	$100=1 \mathrm{PID}$ customer unit
40.03	Process PID setpoint actual	Real	-200000.00...200000.00	PID customer units	$100=1 \mathrm{PID}$   customer unit


No.	Name	Type	Range	Unit	FbEq32
40.04	Process PID deviation actual	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \end{array}$ units	$\begin{gathered} 100=1 \text { PID } \\ \text { customer unit } \end{gathered}$
40.05	Process PID trim output act	Real	-32768... 32768	-	$1=1$
40.06	Process PID status word	PB	0000h...FFFFh	-	$1=1$
40.07	Process PID operation mode	List	0... 2	-	$1=1$
40.08	Set 1 feedback 1 source	Analog src	-	-	$1=1$
40.09	Set 1 feedback 2 source	Analog src	-	-	$1=1$
40.10	Set 1 feedback function	List	0... 11	-	$1=1$
40.11	Set 1 feedback filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
40.14	Set 1 setpoint scaling	Real	-200000.00...200000.00	-	$100=1$
40.15	Set 1 output scaling	Real	-200000.00...200000.00	-	$100=1$
40.16	Set 1 setpoint 1 source	Analog src	-	-	$1=1$
40.17	Set 1 setpoint 2 source	Analog src	-	-	$1=1$
40.18	Set 1 setpoint function	List	0...11	-	1 = 1
40.19	Set 1 internal setpoint sel1	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
40.20	Set 1 internal setpoint sel2	$\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$	-	-	$1=1$
40.21	Set 1 internal setpoint 1	Real	-200000.00...200000.00	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100 \text { = } 1 \text { PID }$   customer unit
40.22	Set 1 internal setpoint 2	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$ customer unit
40.23	Set 1 internal setpoint 3	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$ customer unit
40.24	Set 1 internal setpoint 0	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \mathrm{PID}$ customer unit
40.26	Set 1 setpoint min	Real	-200000.00...200000.00	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100 \text { = } 1 \text { PID }$ customer unit
40.27	Set 1 setpoint max	Real	-200000.00...200000.00	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$   customer unit
40.28	Set 1 setpoint increase time	Real	0.0...1800.0	s	$10=1 \mathrm{~s}$
40.29	Set 1 setpoint decrease time	Real	0.0...1800.0	s	$10=1 \mathrm{~s}$
40.30	Set 1 setpoint freeze enable	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
40.31	Set 1 deviation inversion	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
40.32	Set 1 gain	Real	0.01...100.00	-	$100=1$


No.	Name	Type	Range	Unit	FbEq32
40.33	Set 1 integration time	Real	0.0...9999.0	s	$10=1 \mathrm{~s}$
40.34	Set 1 derivation time	Real	0.000...10.000	s	$1000=1 \mathrm{~s}$
40.35	Set 1 derivation filter time	Real	0.0...10.0	s	$10=1 \mathrm{~s}$
40.36	Set 1 output min	Real	-200000.00...200000.00	-	$100=1$
40.37	Set 1 output max	Real	-200000.00...200000.00	-	$100=1$
40.38	Set 1 output freeze enable	Binary src	-	-	$1=1$
40.39	Set 1 deadband range	Real	0..... 200000.0	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$10=1 \mathrm{PID}$   customer unit
40.40	Set 1 deadband delay	Real	0.0 ... 3600.0	s	$10=1 \mathrm{~s}$
40.43	Set 1 sleep level	Real	0.0...200000.0	-	$10=1$
40.44	Set 1 sleep delay	Real	0.0...3600.0	s	$10=1 \mathrm{~s}$
40.45	Set 1 sleep boost time	Real	0.0...3600.0	s	$10=1 \mathrm{~s}$
40.46	Set 1 sleep boost step	Real	0.0...200000.0	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$10=1 \mathrm{PID}$ customer unit
40.47	Set 1 wake-up deviation	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \mathrm{PID}$ customer unit
40.48	Set 1 wake-up delay	Real	0.00...60.00	s	$100=1 \mathrm{~s}$
40.49	Set 1 tracking mode	Binary src	-	-	$1=1$
40.50	Set 1 tracking ref selection	Analog src	-	-	$1=1$
40.51	Set 1 trim mode	List	0...3	-	$1=1$
40.52	Set 1 trim selection	List	1... 3	-	$1=1$
40.53	Set 1 trimmed ref pointer	Binary src	-	-	$1=1$
40.54	Set 1 trim mix	Real	$0.000 \ldots 1.000$	-	$1000=1$
40.55	Set 1 trim adjust	Real	-100.000 ... 100.000	-	$1000=1$
40.56	Set 1 trim source	List	1... 2	-	$1=1$
40.57	PID set1/set2 selection	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
40.58	Set 1 increase prevention	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
40.59	Set 1 decrease prevention	Binary src	-	-	$1=1$
40.60	Set 1 PID activation source	$\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$	-	-	$1=1$
40.61	Setpoint scaling actual	Real	-200000.00...200000.00	-	$100=1$
40.62	PID internal setpoint actual	Real	-200000.00...200000.00	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$   customer unit
40.65	Trim auto connection	List	0...1	-	1 = 1


No.	Name	Type	Range	Unit	FbEq32
40.70	Compensated setpoint	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$\begin{gathered} 100=1 \text { PID } \\ \text { customer unit } \end{gathered}$
40.79	Set 1 units	List	-	-	1 = 1
40.80	Set 1 PID output min source	List	0... 1	-	1 = 1
40.81	Set 1 PID output max source	List	0... 1	-	$1=1$
40.89	Set 1 setpoint multiplier	Real	-200000.00...200000.00	-	$100=1$
40.90	Set 1 feedback multiplier	Real	-200000.00...200000.00	-	$100=1$
40.91	Feedback data storage	Real	-327.68...327.67	-	$100=1$
40.92	Setpoint data storage	Real	-327.68...327.67	-	$100=1$
40.96	Process PID output \%	Real	-100.00...100.00	\%	$100=1$
40.97	Process PID feedback \%	Real	-100.00...100.00	\%	$100=1$
40.98	Process PID setpoint \%	Real	-100.00...100.00	\%	$100=1$
40.99	Process PID deviation \%	Real	-100.00...100.00	\%	$100=1$
41 Process PID set 2					
41.08	Set 2 feedback 1 source	Analog src	-	-	$1=1$
41.09	Set 2 feedback 2 source	Analog src	-	-	$1=1$
41.10	Set 2 feedback function	List	0... 11	-	$1=1$
41.11	Set 2 feedback filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
41.14	Set 2 setpoint scaling	Real	-200000.00...200000.00	-	$100=1$
41.15	Set 2 output scaling	Real	-200000.00...200000.00	-	$100=1$
41.16	Set 2 setpoint 1 source	Analog src	-	-	$1=1$
41.17	Set 2 setpoint 2 source	Analog src	-	-	$1=1$
41.18	Set 2 setpoint function	List	0...13	-	1 = 1
41.19	Set 2 internal setpoint sel1	$\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$	-	-	$1=1$
41.20	Set 2 internal setpoint sel2	Binary src	-	-	$1=1$
41.21	Set 2 internal setpoint 1	Real	-200000.00...200000.00	PID customer unit	$100 \text { = } 1 \text { PID }$   customer unit
41.22	Set 2 internal setpoint 2	Real	-200000.00...200000.00	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$ customer unit
41.23	Set 2 internal setpoint 3	Real	-200000.00...200000.00	$\begin{array}{c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100 \text { = } 1 \text { PID }$ customer unit
41.24	Set 2 internal setpoint 0	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100 \text { = } 1 \text { PID }$   customer unit
41.26	Set 2 setpoint min	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$ customer unit


No.	Name	Type	Range	Unit	FbEq32
41.27	Set 2 setpoint max	Real	-200000.00...200000.00	$\begin{array}{c\|} \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$ customer unit
41.28	Set 2 setpoint increase time	Real	0.0...1800.0	s	$10=1 \mathrm{~s}$
41.29	Set 2 setpoint decrease time	Real	0.0...1800.0	s	$10=1 \mathrm{~s}$
41.30	Set 2 setpoint freeze enable	Binary src	-	-	$1=1$
41.31	Set 2 deviation inversion	Binary src	-	-	$1=1$
41.32	Set 2 gain	Real	0.10...100.00	-	$100=1$
41.33	Set 2 integration time	Real	0.0...9999.0	s	$10=1 \mathrm{~s}$
41.34	Set 2 derivation time	Real	0.000...10.000	s	$1000=1 \mathrm{~s}$
41.35	Set 2 derivation filter time	Real	0.0...10.0	s	$10=1 \mathrm{~s}$
41.36	Set 2 output min	Real	-200000.00...200000.00	-	$100=1$
41.37	Set 2 output max	Real	-200000.00...200000.00	-	$100=1$
41.38	Set 2 output freeze enable	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
41.39	Set 2 deadband range	Real	0..... 200000.0	-	$10=1 \mathrm{PID}$ customer unit
41.40	Set 2 deadband delay	Real	0.0 ... 3600.0	s	$10=1 \mathrm{~s}$
41.43	Set 2 sleep level	Real	0.0... 200000.0	-	$10=1$
41.44	Set 2 sleep delay	Real	0.0...3600.0	s	$10=1 \mathrm{~s}$
41.45	Set 2 sleep boost time	Real	0.0...3600.0	s	$10=1 \mathrm{~s}$
41.46	Set 2 sleep boost step	Real	0.0...200000.0	$\begin{gathered} \text { PID } \\ \text { customer } \\ \text { units } \end{gathered}$	$10=1 \mathrm{PID}$ customer unit
41.47	Set 2 wake-up deviation	Real	-200000.00...200000.00	$\begin{array}{\|c\|} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{array}$	$100=1 \text { PID }$   customer unit
41.48	Set 2 wake-up delay	Real	0.00...60.00	s	$100=1 \mathrm{~s}$
41.49	Set 2 tracking mode	$\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$	-	-	$1=1$
41.50	Set 2 tracking ref selection	Analog src	-	-	$1=1$
41.51	Set 2 trim mode	List	0...3	-	$1=1$
41.52	Set 2 trim selection	List	1... 3	-	1 = 1
41.53	Set 2 trimmed ref pointer	Analog src	-	-	$1=1$
41.54	Set 2 trim mix	Real	$0.000 \ldots 1.000$	-	$1000=1$
41.55	Set 2 trim adjust	Real	-100.000 ... 100.000	-	$1000=1$
41.56	Set 2 trim source	List	1... 2	-	$1=1$
41.58	Set 2 increase prevention	$\begin{aligned} & \text { Binary } \\ & \text { src } \end{aligned}$	-	-	$1=1$
41.59	Set 2 decrease prevention	Binary src	-	-	$1=1$


No.	Name	Type	Range	Unit	FbEq32
41.60	Set 2 PID activation source	Binary   src	-	-	$1=1$
41.79	Set 2 units	List	-	-	$1=1$
41.80	Set 2 PID output min source	List	$0 \ldots 1$	-	$1=1$
41.81	Set 2 PID output max source	List	$0 \ldots 1$	-	$1=1$
41.89	Set 2 setpoint multiplier	Real	$-200000.00 \ldots 200000.00$	-	$100=1$
41.90	Set 2 feedback multiplier	Real	$-200000.00 \ldots 200000.00$	-	$100=1$

## 43 Brake chopper

43.01	Braking resistor temperature	Real	$0.0 \ldots 120.0$	$\%$	$10=1 \%$
43.06	Brake chopper function	List	$0 \ldots 3$	-	$1=1$
43.07	Brake chopper run enable	Binary   src	-	-	$1=1$
43.08	Brake resistor thermal tc	Real	$0 \ldots 10000$	s	$1=1 \mathrm{~s}$
43.09	Brake resistor Pmax cont	Real	$0.00 \ldots 10000.00$	kW	$100=1 \mathrm{~kW}$
43.10	Brake resistance	Real	$0.0 \ldots 1000.0$	Ohm	$10=1 \mathrm{hm}$
43.11	Brake resistor fault limit	Real	$0 \ldots 150$	$\%$	$1=1 \%$
43.12	Brake resistor warning limit	Real	$0 \ldots 150$	$\%$	$1=1 \%$

44 Mechanical brake control

44.01	Brake control status	$P B$	0000h...FFFFh	-	1 = 1
44.06	Brake control enable	Binary src	-	-	$1=1$
44.08	Brake open delay	Real	0.00...5.00	s	$100=1 \mathrm{~s}$
44.13	Brake close delay	Real	0.00...60.00	s	$100=1 \mathrm{~s}$
44.14	Brake close level	Real	0.00... 1000.00	rpm	100 = 1 rpm
45 Energy efficiency					
45.01	Saved GW hours	Real	0... 65535	GWh	1 = 1 GWh
45.02	Saved MW hours	Real	0... 999	MWh	1 = 1 MWh
45.03	Saved kW hours	Real	0.0...999.9	kWh	$10=1 \mathrm{kWh}$
45.04	Saved energy	Real	0.0...214748364.0	kWh	$10=1 \mathrm{kWh}$
45.05	Saved money x1000	Real	0...4294967295 thousands	(definable)	$\begin{gathered} 1=1 \text { currency } \\ \text { unit } \end{gathered}$
45.06	Saved money	Real	0.00...999.99	(definable)	$100=1$   currency unit
45.07	Saved amount	Real	0.00...21474830.00	(definable)	$100=1$   currency unit
45.08	CO2 reduction in kilotons	Real	0... 65535	metric kiloton	1 = 1 metric kiloton
45.09	CO2 reduction in tons	Real	0.0...999.9	metric ton	$\begin{gathered} 10=1 \text { metric } \\ \text { ton } \end{gathered}$
45.10	Total saved CO2	Real	0.0... 214748300.8	metric ton	$\begin{aligned} & 10= 1 \text { metric } \\ & \text { ton } \end{aligned}$
45.11	Energy optimizer	List	0... 1	-	1 = 1
45.12	Energy tariff 1	Real	0.000...4294966.296	(definable)	$1000=1$   currency unit


No.	Name	Type	Range	Unit	FbEq32
45.13	Energy tariff 2	Real	0.000...4294966.296	(definable)	$1000=1$   currency unit
45.14	Tariff selection	Binary src	-	-	$1=1$
45.18	CO2 conversion factor	Real	0.000...65.535	tn/ MWh	$\begin{gathered} 1000= \\ 1 \mathrm{tn} / \mathrm{MWh} \end{gathered}$
45.19	Comparison power	Real	0.00...10000000.00	kW	$10=1 \mathrm{~kW}$
45.21	Energy calculations reset	List	0... 1	-	1 = 1
45.24	Hourly peak power value	Real	-3000.00 .. 3000.00	kW	1 = 1 kW
45.25	Hourly peak power time	Real			N/A
45.26	Hourly total energy (resettable)	Real	-3000.00 .. 3000.00	kWh	$1=1 \mathrm{kWh}$
45.27	Daily peak power value (resettable)	Real	-3000.00 .. 3000.00	kW	1 = 1 kW
45.28	Daily peak power time	Real			N/A
45.29	Daily total energy (resettable)	Real	-30000.00 .. 30000.00	kWh	$1=1 \mathrm{kWh}$
45.30	Last day total energy	Real	-30000.00 ... 30000.00	kWh	$1=1 \mathrm{kWh}$
45.31	Monthly peak power value (resettable)	Real	-3000.00 ... 3000.00	kW	1 = 1 kW
45.32	Monthly peak power date	Real	-		N/A
45.33	Monthly peak power time	Real	-		N/A
45.34	Monthly total energy (resettable)	Real	-1000000.00 .. 1000000.00	kWh	$1=1 \mathrm{kWh}$
45.35	Last month total energy	Real	-1000000.00 ... 1000000.00	kWh	$1=1 \mathrm{kWh}$
45.36	Lifetime peak power value	Real	-3000.00 ... 3000.00	kW	1 = 1 kW
45.37	Lifetime peak power date	Real			N/A
45.38	Lifetime peak power time	Real	-		N/A
46 Monitoring/scaling settings					
46.01	Speed scaling	Real	0.00...30000.00	rpm	$100=1 \mathrm{rpm}$
46.02	Frequency scaling	Real	0.10... 1000.00	Hz	$100=1 \mathrm{~Hz}$
46.03	Torque scaling	Real	0.1... 1000.0	\%	10 = 1\%
46.04	Power scaling	Real	0.10... 30000.00	-	$10=1$
46.05	Current scaling	Real	0... 30000	A	$1=1 \mathrm{~A}$
46.06	Speed ref zero scaling	Real	$0.00 \ldots 30000.00$	rpm	$100=1 \mathrm{rpm}$
46.07	Frequency ref zero scaling	Real	0.00... 1000.00	Hz	$100=1 \mathrm{~Hz}$
46.11	Filter time motor speed	Real	2... 20000	ms	$1=1 \mathrm{~ms}$
46.12	Filter time output frequency	Real	2... 20000	ms	$1=1 \mathrm{~ms}$
46.13	Filter time motor torque	Real	2... 20000	ms	$1=1 \mathrm{~ms}$
46.14	Filter time power	Real	2... 20000	ms	$1=1 \mathrm{~ms}$
46.21	At speed hysteresis	Real	0.00... 30000.00	rpm	$100=1 \mathrm{rpm}$
46.22	At frequency hysteresis	Real	0.00... 1000.00	Hz	$100=1 \mathrm{~Hz}$
46.23	At torque hysteresis	Real	0.0... 300.0	\%	1 = 1\%
46.31	Above speed limit	Real	0.00... 30000.00	rpm	100 = 1 rpm


No.	Name	Type	Range	Unit	FbEq32
46.32	Above frequency limit	Real	0.00... 1000.00	Hz	$100=1 \mathrm{~Hz}$
46.33	Above torque limit	Real	0.0.. 1600.0	\%	$10=1 \%$
46.41	kWh pulse scaling	Real	0.001... 1000.000	kWh	$1000=1 \mathrm{kWh}$
46.43	Power decimals	Real	0... 3	-	1 = 1
46.44	Current decimals	Real	0... 3	-	$1=1$
47 Data storage					
47.01	Data storage 1 real32	Real	$\begin{gathered} -2147483.000 \ldots \\ 2147483.000 \end{gathered}$	-	$1000=1$
47.02	Data storage 2 real32	Real	$\begin{gathered} \hline-2147483.000 \ldots \\ 2147483.000 \end{gathered}$	-	$1000=1$
47.03	Data storage 3 real32	Real	$\begin{gathered} \hline-2147483.000 \ldots \\ 2147483.000 \end{gathered}$	-	$1000=1$
47.04	Data storage 4 real32	Real	$\begin{gathered} -2147483.000 \ldots \\ 2147483.000 \end{gathered}$	-	$1000=1$
47.11	Data storage 1 int32	Real	$\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
47.12	Data storage 2 int32	Real	$\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
47.13	Data storage 3 int32	Real	$\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
47.14	Data storage 4 int32	Real	$\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
47.21	Data storage 1 int16	Real	-32768... 32767	-	1 = 1
47.22	Data storage 2 int16	Real	-32768... 32767	-	1 = 1
47.23	Data storage 3 int16	Real	-32768... 32767	-	1 = 1
47.24	Data storage 4 int16	Real	-32768... 32767	-	1 = 1
49 Panel port communication					
49.01	Node ID number	Real	1... 32	-	$1=1$
49.03	Baud rate	List	1... 5	-	$1=1$
49.04	Communication loss time	Real	0.3...3000.0	S	$10=1 \mathrm{~s}$
49.05	Communication loss action	List	0... 3	-	1 = 1
49.06	Refresh settings	List	0... 1	-	$1=1$
49.19	Basic panel home view 1	List	$\begin{gathered} 0,1,10 \ldots 12,14,16,20,21 \\ 26 \ldots 28,30 \ldots 33,37 \ldots 38 \end{gathered}$	-	$1=1$
49.20	Basic panel home view 2	List	$\begin{gathered} 0,1,10 \ldots 12,14,16,20,21 \\ 26 \ldots . .28,30 \ldots 33,37 \ldots 38 \end{gathered}$	-	1 =
49.21	Basic panel home view 3	List	$\begin{gathered} 0,1,10 \ldots 12,14,16,20,21 \\ 26 \ldots 28,30 \ldots 33,37 \ldots 38 \end{gathered}$	-	$1=1$
49.219	Basic panel home view 4	List	$\begin{gathered} 0,1,10 \ldots 12,14,16,20,21 \\ 26 \ldots 28,30 \ldots 33,37 \ldots 38 \end{gathered}$	-	$1=1$
49.220	Basic panel home view 5	List	$\begin{gathered} 0,1,10 \ldots 12,14,16,20,21 \\ 26 \ldots 28,30 \ldots 33,37 \ldots 38 \end{gathered}$	-	$1=1$
49.221	Basic panel home view 6	List	$\begin{gathered} 0,1,10 \ldots 12,14,16,20,21 \\ 26 \ldots 28,30 \ldots 33,37 \ldots 38 \end{gathered}$	-	$1=1$


No.	Name	Type	Range	Unit	FbEq32
50 Fieldbus adapter (FBA)					
50.01	FBAA enable	List	0... 1	-	1 = 1
50.02	FBAA comm loss func	List	0... 5	-	$1=1$
50.03	FBAA comm loss t out	Real	0.3...6553.5	s	$10=1 \mathrm{~s}$
50.04	FBAA ref1 type	List	0... 5	-	$1=1$
50.05	FBAA ref2 type	List	0... 5	-	1 = 1
50.06	FBAA SW sel	List	0... 1	-	1 = 1
50.07	FBAA actual 1 type	List	0... 5	-	1 = 1
50.08	FBAA actual 2 type	List	0... 5	-	1 = 1
50.09	FBAA SW transparent source	Analog src	-	-	$1=1$
50.10	FBA A act1 transparent source	Analog src	-	-	1 = 1
50.11	FBAA act2 transparent source	Analog src	-	-	$1=1$
50.12	FBAA debug mode	List	0... 1	-	1 = 1
50.13	FBAA control word	Data	00000000h...FFFFFFFFFh	-	$1=1$
50.14	FBAA reference 1	Real	$\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
50.15	FBA A reference 2	Real	$\begin{gathered} -2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
50.16	FBA A status word	Data	00000000h...FFFFFFFFFh	-	1 = 1
50.17	FBAA actual value 1	Real	$\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
50.18	FBAA actual value 2	Real	$\begin{gathered} \hline-2147483648 \ldots \\ 2147483647 \end{gathered}$	-	$1=1$
51 FBA A settings					
51.01	FBAA type	List	-	-	1 = 1
51.02	FBAA Par2	Real	0... 65535	-	$1=1$
...	$\ldots$	$\cdots$	$\cdots$	...	
51.26	FBAA Par26	Real	0... 65535	-	1 = 1
51.27	FBAA par refresh	List	0... 1	-	$1=1$
51.28	FBAA par table ver	Data	-	-	$1=1$
51.29	FBA A drive type code	Real	0... 65535	-	$1=1$
51.30	FBAA mapping file ver	Real	0... 65535	-	$1=1$
51.31	D2FBA A comm status	List	0... 6	-	1 = 1
51.32	FBAA comm SW ver	Data	-	-	$1=1$
51.33	FBAA appl SW ver	Data	-	-	1 = 1
52 FBA A data in					
52.01	FBA A data in1	List	-	-	$1=1$
...	...	...	...	$\ldots$	
52.12	FBAA data in 12	List	-	-	$1=1$


No.	Name	Type	Range	Unit	FbEq32
53 FBA A data out					
53.01	FBA A data out1	List	-	-	$1=1$
$\ldots$	...	...	...	...	
53.12	FBA A data out12	List	-	-	1 = 1
58 Embedded fieldbus					
58.01	Protocol enable	List	0... 1	-	1 = 1
58.02	Protocol ID	Real	0000h...FFFFh	-	$1=1$
58.03	Node address	Real	0... 255	-	$1=1$
58.04	Baud rate	List	0... 7	-	1 = 1
58.05	Parity	List	0... 3	-	$1=1$
58.06	Communication control	List	0... 2	-	$1=1$
58.07	Communication diagnostics	$P B$	0000h...FFFFh	-	$1=1$
58.08	Received packets	Real	0...4294967295	-	$1=1$
58.09	Transmitted packets	Real	0...4294967295	-	$1=1$
58.10	All packets	Real	0...4294967295	-	$1=1$
58.11	UART errors	Real	0...4294967295	-	1 = 1
58.12	CRC errors	Real	0...4294967295	-	$1=1$
58.14	Communication loss action	List	0... 5	-	$1=1$
58.15	Communication loss mode	List	1... 2	-	$1=1$
58.16	Communication loss time	Real	0.0..6000.0	s	$10=1 \mathrm{~s}$
58.17	Transmit delay	Real	0... 65535	ms	1 = 1 ms
58.18	EFB control word	$P B$	00000000h...FFFFFFFFh	-	1 = 1
58.19	EFB status word	$P B$	00000000h...FFFFFFFFh	-	$1=1$
58.25	Control profile	List	0, 5	-	1 = 1
58.26	EFB ref1 type	List	0... 5	-	$1=1$
58.27	EFB ref2 type	List	0... 5	-	1 = 1
58.28	EFB act1 type	List	0... 5	-	1 = 1
58.29	EFB act2 type	List	0... 5	-	1 = 1
58.31	EFB act1 transparent source	Analog src	-	-	$1=1$
58.32	EFB act2 transparent source	Analog src	-	-	$1=1$
58.33	Addressing mode	List	0... 2	-	1 = 1
58.34	Word order	List	0... 1	-	$1=1$
58.101	Data I/O 1	Analog src	-	-	1 = 1
58.102	Data I/O 2	Analog src	-	-	$1=1$
58.103	Data I/O 3	Analog src	-	-	$1=1$
58.104	Data I/O 4	Analog src	-	-	$1=1$


No.	Name	Type	Range	Unit	FbEq32
58.105	Data I/O 5	Analog src	-	-	1 = 1
58.106	Data I/O 6	Analog src	-	-	$1=1$
58.107	Data I/O 7	Analog src	-	-	$1=1$
$\ldots$	...	...	...	$\ldots$	
58.114	Data I/O 14	Analog src	-	-	$1=1$
71 External PID1					
71.01	External PID act value	Real	-200000.00...200000.00	\%	$100=1 \text { PID }$ customer unit
71.02	Feedback act value	Real	-200000.00...200000.00	PID customer units	$\begin{aligned} & 100=1 \text { PID } \\ & \text { customer unit } \end{aligned}$
71.03	Setpoint act value	Real	-200000.00...200000.00	PID customer units	$\begin{aligned} & 100=1 \text { PID } \\ & \text { customer unit } \end{aligned}$
71.04	Deviation act value	Real	-200000.00...200000.00	PID customer units	$\begin{aligned} & 100=1 \text { PID } \\ & \text { customer unit } \end{aligned}$
71.06	PID status word	PB	0000h...FFFFh	-	1 = 1
71.07	PID operation mode	List	0... 2	-	$1=1$
71.08	Feedback 1 source	Analog src	-	-	$1=1$
71.11	Feedback filter time	Real	0.000...30.000	s	$1000=1 \mathrm{~s}$
71.14	Setpoint scaling	Real	-200000.00...200000.00	-	$100=1$
71.15	Output scaling	Real	-200000.00...200000.00	-	$100=1$
71.16	Setpoint 1 source	Analog src	-	-	$1=1$
71.19	Internal setpoint sel1	$\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$	-	-	$1=1$
71.20	Internal setpoint sel2	$\begin{gathered} \text { Binary } \\ \text { src } \end{gathered}$	-	-	$1=1$
71.21	Internal setpoint 1	Real	-200000.00...200000.00	PID customer units	$\begin{gathered} 100=1 \text { PID } \\ \text { customer unit } \end{gathered}$
71.22	Internal setpoint 2	Real	-200000.00...200000.00	PID customer units	$100=1 \text { PID }$ customer unit
71.23	Internal setpoint 3	Real	-200000.00...200000.00	$\begin{gathered} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{gathered}$	$100=1 \text { PID }$ customer unit
71.26	Setpoint min	Real	-200000.00...200000.00	PID customer units	$\begin{gathered} 100=1 \text { PID } \\ \text { customer units } \end{gathered}$
71.27	Setpoint max	Real	-200000.00...200000.00	$\begin{gathered} \hline \text { PID } \\ \text { customer } \\ \text { units } \end{gathered}$	$\begin{gathered} \hline 100=1 \text { PID } \\ \text { customer units } \end{gathered}$

$\qquad$

No.	Name	Type	Range	Unit	FbEq32
71.31	Deviation inversion	Binary src	-	-	1 = 1
71.32	Gain	Real	0.101... 100.00	-	$100=1$
71.33	Integration time	Real	0.0...9999.0	s	$10=1 \mathrm{~s}$
71.34	Derivation time	Real	0.000...10.000	s	$1000=1 \mathrm{~s}$
71.35	Derivation filter time	Real	0.0... 10.0	S	$1000=1 \mathrm{~s}$
71.36	Output min	Real	-200000.00...200000.00	-	$10=1$
71.37	Output max	Real	-200000.00...200000.00	-	$10=1$
71.38	Output freeze enable	Binary src	-	-	$1=1$
71.39	Deadband range	Real	0.0.. 200000.0	PID customer units	$10=1 \text { PID }$ customer unit
71.40	Deadband delay	Real	0.0...3600.0	s	$1000=1 \mathrm{~s}$
71.58	Increase prevention	Binary src	-	-	$1=1$
71.59	Decrease prevention	Binary src	-	-	$1=1$
71.62	Internal setpoint actual	Real	-200000.00...200000.00	PID customer units	$100=1 \text { PID }$   customer unit
71.79	External PID units	List	-	-	1 = 1
76 PFC configuration					
76.01	PFC status	$P B$	0000h...FFFFh	-	$1=1$
76.02	Multipump system status	List	$\begin{gathered} 0 \ldots .2,100 \ldots 103,200 \ldots 202 \\ 300 \ldots 302,400,500,600 \\ 800 \ldots 801,4 \ldots 9 \end{gathered}$	-	$1=1$
76.11	Pump/fan status 1	$P B$	0000h...FFFFh	-	1 = 1
76.12	Pump/fan status 2	$P B$	0000h...FFFFh	-	1 = 1
76.13	Pump/fan status 3	$P B$	0000h...FFFFh	-	$1=1$
76.14	Pump/fan status 4	$P B$	0000h...FFFFh	-	$1=1$
76.15	Pump/fan status 5	$P B$	0000h...FFFFh	-	$1=1$
76.16	Pump/fan status 6	PB	0000h...FFFFh	-	$1=1$
76.21	Multipump configuration	List	0, 2... 3	-	$1=1$
76.25	Number of motors	Real	1...4	-	1 = 1
76.26	Min number of motors allowed	Real	0... 4	-	$1=1$
76.27	Max number of motors allowed	Real	1... 4	-	1 = 1
76.30	Start point 1	Real	0... 32767	rpm/Hz	1 = 1 unit
76.31	Start point 2	Real	0... 32767	rpm/Hz	1 = 1 unit
76.32	Start point 3	Real	0... 32767	rpm/Hz	1 = 1 unit
76.33	Start point 4	Real	0... 32767	rpm/Hz	1 = 1 unit
76.34	Start point 5	Real	0... 32767	rpm/Hz	1 = 1 unit
76.41	Stop point 1	Real	0... 32767	rpm/Hz	1 = 1 unit
76.42	Stop point 2	Real	0... 32767	rpm/Hz	1 = 1 unit


No.	Name	Type	Range	Unit	FbEq32
76.43	Stop point 3	Real	0... 32767	rpm/Hz	1 = 1 unit
76.44	Stop point 4	Real	0... 32767	rpm/Hz	1 = 1 unit
76.45	Stop point 5	Real	0... 32767	$\mathrm{rpm} / \mathrm{Hz}$	1 = 1 unit
76.55	Start delay	Real	0.00... 12600.00	s	$100=1 \mathrm{~s}$
76.56	Stop delay	Real	0.00... 12600.00	s	$100=1 \mathrm{~s}$
76.57	PFC speed hold on	Real	0.00... 1000.00	s	$100=1 \mathrm{~s}$
76.58	PFC speed hold off	Real	0.00.. 1000.00	s	$100=1 \mathrm{~s}$
76.59	PFC contactor delay	Real	0.20...600.00	s	$100=1 \mathrm{~s}$
76.60	PFC ramp acceleration time	Real	0.00... 1800.00	s	$100=1 \mathrm{~s}$
76.61	PFC ramp deceleration time	Real	0.00... 1800.00	s	$100=1 \mathrm{~s}$
76.70	PFC autochange	Binary src	-	-	$1=1$
76.71	PFC autochange interval	Real	0.00...42949672.95	h	$100=1 \mathrm{~h}$
76.72	Maximum wear imbalance	Real	0.00... 1000000.00	h	$100=1 \mathrm{~h}$
76.73	Autochange level	Real	0.0... 300.0	\%	$10=1 \%$
76.74	Autochange auxiliary PFC	List	0... 1	-	$1=1$
76.81	PFC 1 interlock	Binary src	-	-	$1=1$
76.82	PFC 2 interlock	Binary src	-	-	$1=1$
76.83	PFC 3 interlock	Binary src	-	-	$1=1$
76.84	PFC 4 interlock	Binary src	-	-	$1=1$
76.85	PFC 5 interlock	Binary src	-	-	1 = 1
76.86	PFC 6 interlock	Binary src	-	-	$1=1$
76.95	Regulator bypass control	Binary src	-	-	$1=1$
77 PFC maintenance and monitoring					
77.10	PFC runtime change	List	0... 7	-	$1=1$
77.11	Pump/fan 1 running time	Real	0.00...42949672.95	h	$100=1 \mathrm{~h}$
77.12	Pump/fan 2 running time	Real	0.00..42949672.95	h	$100=1 \mathrm{~h}$
77.13	Pump/fan 3 running time	Real	0.00...42949672.95	h	$100=1 \mathrm{~h}$
77.14	Pump/fan 4 running time	Real	0.00...42949672.95	h	$100=1 \mathrm{~h}$
77.15	Pump/fan 5 running time	Real	0.00...42949672.95	h	$100=1 \mathrm{~h}$
77.16	Pump/fan 6 running time	Real	0.00...42949672.95	h	$100=1 \mathrm{~h}$
95 HW configuration					
95.01	Supply voltage	List	0...3, 5	-	$1=1$
95.02	Adaptive voltage limits	List	0... 1	-	$1=1$
95.03	Estimated AC supply voltage	Real	0... 65535	V	$1=1 \mathrm{~V}$
95.04	Control board supply	List	0... 1	-	1 = 1
95.15	Special HW settings	$P B$	00000000h...FFFFFFFFh	-	$1=1$


No.	Name	Type	Range	Unit	FbEq32
95.20	HW options word 1	$P B$	$0000 \mathrm{~h} .$. FFFFh	-	$1=1$
95.21	HW options word 2	$P B$	$0000 \mathrm{~h} . .$. FFFFh	-	$1=1$
95.26	Motor disconnect detection	List	$0 \ldots 1$	-	$1=1$
95.200	Cooling fan mode	List	$0 \ldots 1$	-	$1=1$

## 96 System

96.01	Language	List	-	-	1 = 1
96.02	Pass code	Data	0... 99999999	-	$1=1$
96.03	Access level status	$P B$	00000000h...FFFFFFFFh	-	1 = 1
96.04	Macro select	List	$0 \ldots .3,11 \ldots 17$	-	1 = 1
96.05	Macro active	List	1...3, 11... 17	-	1 = 1
96.06	Parameter restore	List	$\begin{gathered} 0,2,8,32,62,512,1024 \\ 34560 \end{gathered}$	-	$1=1$
96.07	Parameter save manually	List	0... 1	-	1 = 1
96.08	Control board boot	List	0... 1	-	1 = 1
96.10	User set status	List	0...7, 20... 23	-	$1=1$
96.11	User set save/load	List	0...5, 18... 21	-	1 = 1
96.12	User set I/O mode in1	Binary src	-	-	-
96.13	User set I/O mode in2	Binary src	-	-	-
96.16	Unit selection	$P B$	000h...FFFFh		1 = 1
96.20	Time sync primary source	List	0, 2, 6, 8, 9	-	$1=1$
96.51	Clear fault and event logger	Real	0... 1	-	$1=1$
96.54	Checksum action	Binary src	-	-	$1=1$
96.55	Checksum control word	Binary src	-		
96.68	Actual checksumA	Binary src	-	-	$1=1$
96.69	Actual checksumB	Binary src	-	-	$1=1$
96.70	Disable adaptive program	List	0... 1	-	1 = 1
96.71	Approved checksum A	Binary src	-	-	$1=1$
96.72	Approved checksum B	Binary src	-	-	$1=1$
96.78	550 compatibility mode	List	0... 1	-	1 = 1
96.100	Change user pass code	Data	10000000... 99999999	-	$1=1$
96.101	Confirm user pass code	Data	10000000... 99999999	-	1 = 1
96.102	User lock functionality	PB	0000h...FFFFh	-	1 = 1

## 97 Motor control

97.01	Switching frequency reference	List	$2,4,8,12$	kHz	$1=1 \mathrm{kHz}$
97.02	Minimum switching frequency	List	$1.5,2,4,8,12$	kHz	$1=1 \mathrm{kHz}$
97.03	Slip gain	Real	$0 \ldots 200$	$\%$	$1=1 \%$


No.	Name	Type	Range	Unit	FbEq32
97.04	Voltage reserve	Real	-4... 50	\%	1 = 1\%
97.05	Flux braking	List	0... 2	-	1 = 1
97.08	Optimizer minimum torque	Real	$0.0 \ldots 1600.0$	\%	10 = 1\%
97.10	Signal injection	List	0... 4	-	1 = 1
97.11	TR tuning	Real	25... 400	\%	1 = 1\%
97.13	IR compensation	Real	0.00...50.00	\%	100 = 1\%
97.15	Motor model temperature adaptation	List	0... 1	-	$1=1$
97.16	Stator temperature factor	Real	0... 200	\%	1 = 1\%
97.17	Rotor temperature factor	Real	0... 200	\%	1 = 1\%
97.20	U/F ratio	List	0... 1	-	$1=1$
97.48	Udc stabilizer	List	0,50,100,300,500, 800	-	1 = 1
97.49	Slip gain for scalar	Real	0... 3	\%	1 = 1\%
97.94	IR comp max frequency	Real	1.0... 200.0	\%	10 = 1\%
97.135	Udc ripple	Real	0.0... 200.0	V	$10=1 \mathrm{~V}$
98 User motor parameters					
98.01	User motor model mode	List	0... 1	-	1 = 1
98.02	Rs user	Real	0.0000..0.50000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.03	Rr user	Real	0.0000..0.50000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.04	Lm user	Real	0.00000...10.00000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.05	SigmaL user	Real	0.00000...1.00000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.06	Ld user	Real	0.00000...10.00000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.07	Lq user	Real	0.00000...10.00000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.08	PM flux user	Real	0.00000...2.00000	p.u.	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.09	Rs user SI	Real	0.00000...100.00000	ohm	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.10	Rr user SI	Real	0.00000...100.00000	ohm	$\begin{gathered} 100000= \\ 1 \text { p.u. } \end{gathered}$
98.11	Lm user SI	Real	0.00... 100000.00	mH	$100=1 \mathrm{mH}$
98.12	SigmaL user SI	Real	0.00... 100000.00	mH	$100=1 \mathrm{mH}$
98.13	Ld user SI	Real	0.00... 100000.00	mH	$100=1 \mathrm{mH}$
98.14	Lq user SI	Real	0.00...100000.00	mH	$100=1 \mathrm{mH}$
99 Motor data					
99.03	Motor type	List	0... 2	-	$1=1$
99.04	Motor control mode	List	0... 1	-	$1=1$
99.06	Motor nominal current	Real	0.0..6400.0	A	$10=1 \mathrm{~A}$
99.07	Motor nominal voltage	Real	0.0...960.0	V	$10=1 \mathrm{~V}$


No.	Name	Type	Range	Unit	FbEq32
99.08	Motor nominal frequency	Real	$0.0 \ldots 500.0$	Hz	$100=1 \mathrm{~Hz}$
99.09	Motor nominal speed	Real	$0 \ldots 30000$	rpm	$1=1 \mathrm{rpm}$
99.10	Motor nominal power	Real	$0.00 \ldots 10000.00 \mathrm{~kW}$ or   $0.00 \ldots 13404.83 \mathrm{hp}$	kW or hp	$100=1 \mathrm{unit}$
99.11	Motor nominal cos $\Phi$	Real	$0.00 \ldots 1.00$	-	$100=1$
99.12	Motor nominal torque	Real	$0.000 \ldots 4000000.000 \mathrm{~N} \cdot \mathrm{~m}$ or   $0.000 \ldots 2950248.597 \mathrm{lb} \cdot \mathrm{ft}$	$\mathrm{N} \cdot \mathrm{m}$ or   $\mathrm{lb} \cdot \mathrm{ft}$	$1000=1 \mathrm{unit}$
99.13	ID run requested	List	$0 \ldots 3,5 \ldots 6$	-	$1=1$
99.14	Last ID run performed	List	$0 \ldots 3,5 \ldots 6$	-	$1=1$
99.15	Motor polepairs calculated	Real	$0 \ldots 1000$	-	$1=1$
99.16	Motor phase order	List	$0 \ldots 1$	-	$1=1$

## Fault tracing

## What this chapter contains

The chapter lists the warning and fault messages including possible causes and corrective actions. The causes of most warnings and faults can be identified and corrected using the information in this chapter. If not, contact an ABB service representative. If you have a possibility to use the Drive composer PC tool, send the Support package created by the Drive composer to the ABB service representative.

Warnings and faults are listed below in separate tables. Each table is sorted by warning/fault code.

## Safety

WARNING! Only qualified electricians are allowed to service the drive. Read the instructions in chapter Safety instructions at the beginning of the Hardware manual of the drive before working on the drive.

## Indications

## Warnings and faults

Warnings and faults indicate an abnormal drive status. The codes and names of active warnings and faults are displayed on the control panel of the drive as well as in the Drive composer PC tool. Only the codes of warnings and faults are available over fieldbus.

Warnings do not need to be reset; they stop showing when the cause of the warning ceases. Warnings do not trip the drive and it will continue to operate the motor.

Faults latch inside the drive and cause the drive to trip, and the motor stops. After the cause of a fault has been removed, the fault can be reset from a selectable source (Menu - Primary settings - Advanced functions - Reset faults manually (Reset faults manually from:) on the control panel; or parameter 31.11 Fault reset selection) such as the control panel, Drive composer PC tool, the digital inputs of the drive, or fieldbus. Reseting the fault creates an event 64FF Fault reset. After the reset, the drive can be restarted.

Note that some faults require a reboot of the control unit either by switching the power off and on, or using parameter 96.08 Control board boot - this is mentioned in the fault listing wherever appropriate.

## Pure events

In addition to warnings and faults, there are pure events that are only recorded in the event log of the drive. The codes of these events are included in the Warning messages table on page (482).

## Editable messages

For external events, the action (fault or warning), name and the message text can be edited. To specify external events, select Menu - Primary settings - Advanced functions - External events.

Contact information can also be included and the text edited. To specify contact information, select Menu - Primary settings - Clock, region, display - Contact info view.

## Warning/fault history

## Event log

All indications are stored in the event log with a time stamp and other information. The event log stores information on

- the last 8 fault recordings, that is, faults that tripped the drive or fault resets
- the last 10 warnings or pure events that occurred.

See section Viewing warning/fault information on page 481.

## Auxiliary codes

Some events generate an auxiliary code that often helps in pinpointing the problem. On the control panel, the auxiliary code is stored as part of the details of the event; in the Drive composer PC tool, the auxiliary code is shown in the event listing.

## Viewing warning/fault information

The drive is able to store a list of the active faults actually causing the drive to trip at the present time. The drive also stores a list of faults and warnings that have previously occurred.

For each stored fault, the control panel shows the fault code, time and values of nine parameters (actual signals and status words) stored at the time of the fault. The values for the latest fault are in parameters 05.80...05.88.

For active faults and warnings, see

- Menu - Diagnostics - Active faults
- Menu - Diagnostics - Active warnings
- Options - Active faults
- Options - Active warnings
- parameters in group 04 Warnings and faults (page 203).

For previously occurred faults and warnings, see

- Menu - Diagnostics - Fault \& event log
- parameters in group 04 Warnings and faults (page 203).

The event log can also be accessed (and reset) using the Drive composer PC tool. See Drive composer PC tool user's manual (3AUA0000094606 [English]).

## QR code generation for mobile service application

A QR code (or a series of QR codes) can be generated by the drive for display on the control panel. The QR code contains drive identification data, information on the latest events, and values of status and counter parameters. The code can be read with a mobile device containing the ABB service application, which then sends the data to ABB for analysis. For more information on the application, contact your local $A B B$ service representative.

To generate the QR code, select Menu - System info - QR code.
Note: If a control panel which does not support QR code generation (version older than v.6.4x) is used, the QR code menu entry will disappear totally and will not be available any longer either with control panels supporting the QR code generation.

## Warning messages

Note: The list also contains events that only appear in the Event log.

Code   (hex)	Warning / Aux. code	Cause	What to do
64FF	Fault reset	A fault has been reset from the   control panel, Drive composer   PC tool, fieldbus or I/O.	Event. Informative only.
B686	Checksum mismatch	Parameter checksum 96.68   Actual checksumA does not   match 96.71 Approved   checksum A and/ or parameter   checksum 96.69 Actual   checksumB does not match   96.72 Approved checksum B.	Event. Informative only.
A2A1	Current calibration	Current offset and gain   measurement calibration will   occur at next start.	Informative warning. (See parameter   99.13 ID run requested.)
A2B1	Overcurrent	Output current has exceeded   internal fault limit.   In addition to an actual   overcurrent situation, this   warning may also be caused   by an earth fault or supply   phase loss.	Check motor load.   Check acceleration times in parameter   group 23 Speed reference ramp (speed   control), 26 Torque reference chain   (torque control) or 28 Frequency   reference chain (frequency control). Also   check parameters 46.01 Speed scaling,   46.02 Frequency scaling and 46.03   Torque scaling.   Check motor and motor cable (including   phasing and delta/star connection).   Check for an earth fault in motor or motor   cables by measuring the insulation   resistances of motor and motor cable.   See chapter Electrical installation,   section Checking the insulation of the   assembly in the Hardware manual of the   drive.   Check there are no contactors opening   and closing in motor cable.   Check that the start-up data in parameter   group 99 Motor data corresponds to the   motor rating plate.   Check that there are no power factor   correction capacitors or surge absorbers   in motor cable.
A2B3	Earth leakage		Drive has detected load   unbalance typically due to   earth fault in motor or motor   cable.


Code (hex)	Warning / Aux. code	Cause	What to do
A2B4	Short circuit	Short-circuit in motor cable(s) or motor.	Check motor and motor cable for cabling errors.   Check motor and motor cable (including phasing and delta/star connection). Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. See chapter Electrical installation, section Checking the insulation of the assembly in the Hardware manual of the drive.   Check there are no power factor correction capacitors or surge absorbers in motor cable.
A2BA	IGBT overload	Excessive IGBT junction to case temperature. This warning protects the IGBT(s) and can be activated by a short circuit in the motor cable.	Check motor cable.   Check ambient conditions.   Check air flow and fan operation.   Check heatsink fins for dust pick-up.   Check motor power against drive power.
A3A1	DC link overvoltage	Intermediate circuit DC voltage too high (when the drive is stopped).	Check the supply voltage setting (parameter 95.01 Supply voltage). Note that the wrong setting of the parameter may cause the motor to rush uncontrollably, or may overload the brake chopper or resistor.   Check the supply voltage.   If the problem persists, contact your local ABB representative.
A3A2	DC link undervoltage	Intermediate circuit DC voltage too low (when the drive is stopped).	
A3AA	DC not charged	The voltage of the intermediate DC circuit has not yet risen to operating level.	
A490	Incorrect temperature sensor setup	Temperature cannot be supervised due to incorrect adapter setup.   AO settings do not match with 35.11 and 35.21 .	Check the settings of temperature source parameters 35.11 and 35.21.   Check the settings of temperature source parameters 35.11 and 35.21 against AO parameters 13.12 and 13.22 .
A491	External temperature 1   (Editable message text)	Measured temperature 1 has exceeded warning limit.	Check the value of parameter 35.02 Measured temperature 1.   Check the cooling of the motor (or other equipment whose temperature is being measured).   Check the value of 35.13 Temperature 1 warning limit.
A492	External temperature 2   (Editable message text)	Measured temperature 2 has exceeded warning limit.	Check the value of parameter 35.03 Measured temperature 2.   Check the cooling of the motor (or other equipment whose temperature is being measured).   Check the value of 35.23 Temperature 2 warning limit.
A4A0	Control board temperature	Control unit temperature is too high.	Check the auxiliary code. See actions for each code below.
	(none)	Temperature above warning limit	Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up.
	1	Thermistor broken	Contact an ABB service representative for control unit replacement.

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Code } \\ \text { (hex) }\end{array} & \text { Warning / Aux. code } & \text { Cause } & \text { What to do } \\ \hline \text { A4A1 } & \text { IGBT overtemperature } & \begin{array}{l}\text { Estimated drive IGBT } \\ \text { temperature is excessive. }\end{array} & \begin{array}{l}\text { Check ambient conditions. } \\ \text { Check air flow and fan operation. } \\ \text { Check heatsink fins for dust pick-up. } \\ \text { Check motor power against drive power. }\end{array} \\ \hline \text { A4A9 } & \text { Cooling } & & \begin{array}{l}\text { Drive module temperature is } \\ \text { excessive. }\end{array} \\ & & & \begin{array}{l}\text { Check ambient temperature. If it exceeds } \\ \text { 40 }{ }^{\circ} \mathrm{C} / 104{ }^{\circ} \mathrm{F} \text { (IP21 frames R4...R9) or if } \\ \text { it exceeds 50 }{ }^{\circ} \mathrm{C} / 122{ }^{\circ} \mathrm{F} \text { (IP21 frames } \\ \text { R1...R9), ensure that load current does } \\ \text { not exceed derated load capacity of } \\ \text { drive. For all P55 frames, check the } \\ \text { derating temperatures. See chapter }\end{array} \\ \text { Technical data, section Derating in the } \\ \text { Hardware manual of the drive. } \\ \text { Check drive module cooling air flow and } \\ \text { fan operation. } \\ \text { Check inside of cabinet and heatsink of } \\ \text { drive module for dust pick-up. Clean } \\ \text { whenever necessary. }\end{array}\right\}$

Code (hex)	Warning / Aux. code	Cause	What to do
A5A0	Safe torque off Programmable warning: 31.22 STO indication run/stop	Safe torque off function is active, that is, safety circuit signal(s) connected to connector STO is lost.	Check safety circuit connections. For more information, chapter The Safe torque off function in the Hardware manual of the drive and description of parameter 31.22 STO indication run/stop (page 313).   Check the value of parameter 95.04 Control board supply.
A5EA	Measurement circuit temperature	Problem with internal temperature measurement of the drive. Aux code depends on control unit type.	Contact your local ABB representative.
		Frames R1...R5	
	00000001	IGBT temperature	
	00000003	Board temperature	
	00000006	Power supply temperature	
		Frames R6...R11	
	00000001	U-phase IGBT	
	00000002	V-phase IGBT	
	00000003	W-phase IGBT	
	00000004	Board temperature	
	00000005	Brake chopper	
	00000006	Air inlet (TEMP3)	
	00000007	Power supply temperature	
	00000008	du/dt (TEMP2)	
	00000009	TEMP1	
	FAh =1111 1010	Ambient temperature	
A5EB	PU board powerfail	Power unit power supply failure.	Contact your local ABB representative.
A5ED	Measurement circuit ADC	Measurement circuit fault.	Contact your local ABB representative.
A5EE	Measurement circuit DFF	Measurement circuit fault.	Contact your local ABB representative.
A5EF	PU state feedback	State feedback from output phases does not match control signals.	Contact your local ABB representative.
A5F0	Charging feedback	Charging feedback signal missing.	Check the feedback signal coming from the charging system.
A682	Flash erase speed exceeded	The flash memory (in the memory unit) has been erased too frequently, compromising the lifetime of the memory.	Avoid forcing unnecessary parameter saves by parameter 96.07 or cyclic parameter writes (such as user logger triggering through parameters). Check the auxiliary code (format XYYY $Y Z Z Z)$. " $X$ " specifies the source of warning (1: generic flash erase supervision). "ZZZ" specifies the flash subsector number that generated the warning.


Code (hex)	Warning / Aux. code	Cause	What to do
A686	Checksum mismatch	Parameter checksum 96.68 Actual checksumA does not match 96.71 Approved checksum A and/ or parameter checksum 96.69 Actual checksumB does not match 96.72 Approved checksum B.	Revert parameter changes made after approving the checksum.   If parameter changes are valid, approve new checksum by setting parameter 96.55 Checksum control word bit 12 (Set approved checksum A) and/or 13 (Set approved checksum B) to $1=$ Set.
A6A4	Motor nominal value	The motor parameters are set incorrectly.	Check the auxiliary code. See actions for each code below.
		The drive is not dimensioned correctly.	
	0001	Slip frequency is too small.	Check the settings of the motor configuration parameters in groups 98 and 99.   Check that the drive is sized correctly for the motor.
	0002	Synchronous and nominal speeds differ too much.	
	0003	Nominal speed is higher than synchronous speed with 1 pole pair.	
	0004	Nominal current is outside limits	
	0005	Nominal voltage is outside limits.	
	0006	Nominal power is higher than apparent power.	
	0007	Nominal power not consistent with nominal speed and torque.	
A6A5	No motor data	Parameters in group 99 have not been set.	Check that all the required parameters in group 99 have been set.   Note: It is normal for this warning to appear during the start-up and continue until the motor data is entered.
A6A6	Voltage category unselected	The voltage category has not been defined.	Set voltage category in parameter 95.01 Supply voltage.
A6A7	System time not set	System time is not set. Timed functions cannot be used and fault log dates are not correct.	Set the system time manually or connect the control panel to the drive to synchronize the clock. If basic control panel is used, synchronize the clock through the EFB or a fieldbus module. Set parameter 34.10 Timed functions enable to Disabled to disable the timed functions if they are not used.
A6B0	User lock is open	The user lock is open, ie. user lock configuration parameters 96.100...96.102 are visible.	Close the user lock by entering an invalid pass code in parameter 96.02 Pass code. See section User lock (page 192).
A6B1	User pass code not confirmed	A new user pass code has been entered in parameter 96.100 but not confirmed in 96.101.	Confirm the new pass code by entering the same code in 96.101. To cancel, close the user lock without confirming the new code. See section User lock (page 192).


Code (hex)	Warning / Aux. code	Cause	What to do
A6D1	FBA A parameter conflict	The drive does not have a functionality requested by a PLC, or requested functionality has not been activated.	Check PLC programming.   Check settings of parameter groups 50 Fieldbus adapter (FBA).
A6E5	Al parametrization	The current/voltage hardware setting of an analog input does not correspond to parameter settings.	Check the event log for an auxiliary code. The code identifies the analog input whose settings are in conflict.   Adjust either the hardware setting (on the drive control unit) or parameter 12.15/12.25.   Note: Control unit reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings.
A6E6	ULC configuration	User load curve configuration error.	Check the auxiliary code (format XXXX ZZZZ). "ZZZZ" indicates the problem (see actions for each code below).
	0000	Speed points inconsistent.	Check that each speed point (parameters 37.11...37.15) has a higher value than the previous point.
	0001	Frequency points inconsistent.	Check that each frequency point (37.20...37.16) has a higher value than the previous point.
	0002	Underload point above overload point.	Check that each overload point (37.31...37.35) has a higher value than the corresponding underload point (37.21...37.25).
	0003	Overload point below underload point.	
A780	Motor stall   Programmable warning:   31.24 Stall function	Motor is operating in stall region because of, for example, excessive load or insufficient motor power.	Check motor load and drive ratings. Check fault function parameters.
A783	Motor overload	Motor current is too high.	Check for overloaded motor. Adjust the parameters used for the motor overload function (35.51...35.53) and 35.55...35.56.
A784	Motor disconnect	All three output phases are disconnected from motor.	Check that switches between drive and motor are closed.   Check that all cables between drive and motor are connected and secured.   If no issue was detected and drive output was actually connected to motor, contact ABB.
A792	Brake resistor wiring	Brake resistor short circuit or brake chopper control fault. For frame sizes R6 or larger.	Check brake chopper and brake resistor connection.   Ensure brake resistor is not damaged.


Code (hex)	Warning / Aux. code	Cause	What to do
A793	BR excess temperature	Brake resistor temperature has exceeded warning limit defined by parameter 43.12 Brake resistor warning limit.	Stop drive. Let resistor cool down. Check resistor overload protection function settings (parameter group 43 Brake chopper). Check warning limit setting, parameter 43.12 Brake resistor warning limit. Check that the resistor has been dimensioned correctly. Check that braking cycle meets allowed limits.
A794	BR data	Brake resistor data has not been given.	One or more of the resistor data settings (parameters 43.08...43.10) is incorrect. The parameter is specified by the auxiliary code.
	00000001	Resistance value too low.	Check value of 43.10.
	00000002	Thermal time constant not given.	Check value of 43.08.
	00000003	Maximum continuous power not given.	Check value of 43.09.
A79C	BC IGBT excess temperature	Brake chopper IGBT temperature has exceeded internal warning limit.	Let chopper cool down.   Check for excessive ambient temperature.   Check for cooling fan failure. Check for obstructions in the air flow. Check the dimensioning and cooling of the cabinet.   Check resistor overload protection function settings (parameters 43.06...43.10).   Check minimum allowed resistor value for the chopper being used.   Check that braking cycle meets allowed limits.   Check that drive supply AC voltage is not excessive.
A7A2	Mechanical brake opening failed	Status of mechanical brake acknowledgement is not as expected during brake open.	Check mechanical brake connection. Check mechanical brake settings in parameter group 44 Mechanical brake control.   Check that acknowledgement signal matches the actual status of brake.
A7AB	Extension I/O configuration failure	Installed C-type module is not the same as configured or the communication between the drive and module has been disturbed.	Check that the installed module (shown by parameter 15.02 Detected extension module) is the same as selected by parameter 15.01 Extension module type. Eliminate the disturbance sources.


Code (hex)	Warning / Aux. code	Cause	What to do
A7C1	FBA A communication Programmable warning: 50.02 FBAA comm loss func	Cyclical communication between drive and fieldbus adapter module A or between PLC and fieldbus adapter module $A$ is lost.	Check status of fieldbus communication. See user documentation of fieldbus interface.   Check settings of parameter groups 50 Fieldbus adapter (FBA), 51 FBA A settings, 52 FBA A data in and 53 FBA A data out.   Check cable connections.   Check if communication master is able to communicate.
A7CE	EFB comm loss   Programmable warning: 58.14 Communication loss action	Communication break in embedded fieldbus (EFB) communication.	Check the status of the fieldbus master (online/offline/error etc.).   Check cable connections to the EIA-485/X5 terminals 29, 30 and 31 on the control unit.
A7EE	Panel loss   Programmable warning: 49.05 Communication loss action	Control panel or PC tool selected as active control location for drive has ceased communicating.	Check PC tool or control panel connection.   Check control panel connector. Check mounting platform if being used. Disconnect and reconnect the control panel.
A88F	Cooling fan	Maintenance timer limit exceeded.	Consider changing the cooling fan. Parameter 05.04 Fan on-time counter shows the running time of the cooling fan.
A8A0	Al supervision Programmable warning: 12.03 AI supervision function	An analog signal is outside the limits specified for the analog input.	Check signal level at the analog input. Check the wiring connected to the input. Check the minimum and maximum limits of the input in parameter group 12 Standard AI.
A8A1	RO life warning	The relay has changed states more than the recommended number of times.	Change the control unit or stop using the relay output.
	0001	Relay output 1	Change the control unit or stop using relay output 1.
	0002	Relay output 2	Change the control unit or stop using relay output 2.
	0003	Relay output 3	Change the control unit or stop using relay output 3.
A8A2	RO toggle warning	The relay output is changing states faster than recommended, for example, if a fast changing frequency signal is connected to it. The relay lifetime will be exceeded shortly.	Replace the signal connected to the relay output source with a less frequently changing signal.
	0001	Relay output 1	Select a different signal with parameter 10.24 RO1 source.
	0002	Relay output 2	Select a different signal with parameter 10.27 RO2 source.
	0003	Relay output 3	Select a different signal with parameter 10.30 RO3 source.


$\begin{aligned} & \text { Code } \\ & \text { (hex) } \end{aligned}$	Warning / Aux. code	Cause	What to do
A8B0	ABB Signal supervision 1   (Editable message text) Programmable warning: 32.06 Supervision 1 action	Warning generated by the signal supervision function 1 .	Check the source of the warning (parameter 32.07 Supervision 1 signal).
A8B1	ABB Signal supervision 2   (Editable message text)   Programmable warning:   32.16 Supervision 2 action	Warning generated by the signal supervision function 2.	Check the source of the warning (parameter 32.17 Supervision 2 signal).
A8B2	ABB Signal supervision 3   (Editable message text) Programmable warning: 32.26 Supervision 3 action	Warning generated by the signal supervision function 3 .	Check the source of the warning (parameter 32.27 Supervision 3 signal).
A8B3	ABB Signal supervision 4 (Editable message text) Programmable warning: 32.36 Supervision 4 action	Warning generated by the signal supervision function 4 .	Check the source of the warning (parameter 32.37 Supervision 4 signal).
A8B4	ABB Signal supervision 5   (Editable message text) Programmable warning: 32.46 Supervision 5 action	Warning generated by the signal supervision function 5 .	Check the source of the warning (parameter 32.47 Supervision 5 signal).
A8B5	ABB Signal supervision 6   (Editable message text)   Programmable warning:   32.56 Supervision 6 action	Warning generated by the signal supervision function 6 .	Check the source of the warning (parameter 32.57 Supervision 6 signal).
A8BE	ULC overload warning Programmable fault: 37.03 ULC overload actions	Selected signal has exceeded the user overload curve.	Check for any operating conditions increasing the monitored signal (for example, the loading of the motor if the torque or current is being monitored). Check the definition of the load curve (parameter group 37 User load curve).
A8BF	ULC underload warning   Programmable fault: 37.04 ULC underload actions	Selected signal has fallen below the user underload curve.	Check for any operating conditions decreasing the monitored signal (for example, loss of load if the torque or current is being monitored).   Check the definition of the load curve (parameter group 37 User load curve).
A981	External warning 1   (Editable message text) Programmable warning: 31.01 External event 1 source   31.02 External event 1 type	Fault in external device 1.	Check the external device.   Check setting of parameter 31.01   External event 1 source.
A982	External warning 2   (Editable message text)   Programmable warning: 31.03 External event 2 source   31.04 External event 2 type	Fault in external device 2.	Check the external device.   Check setting of parameter 31.03   External event 2 source.


$\begin{array}{\|l} \hline \begin{array}{l} \text { Code } \\ \text { (hex) } \end{array} \end{array}$	Warning / Aux. code	Cause	What to do
A983	External warning 3 (Editable message text) Programmable warning: 31.05 External event 3 source   31.06 External event 3 type	Fault in external device 3.	Check the external device.   Check setting of parameter 31.05   External event 3 source.
A984	External warning 4 (Editable message text) Programmable warning: 31.07 External event 4 source   31.08 External event 4 type	Fault in external device 4.	Check the external device.   Check setting of parameter 31.07   External event 4 source.
A985	External warning 5 (Editable message text) Programmable warning: 31.09 External event 5 source   31.10 External event 5 type	Fault in external device 5.	Check the external device.   Check setting of parameter 31.09   External event 5 source.
AF88	Season configuration warning	You have configured a season which starts before the previous season.	Configure the seasons with increasing start dates, see parameters 34.60 Season 1 start date...34.63 Season 4 start date.
AF90	Speed controller autotuning	The speed controller autotune routine did not complete successfully.	Check the auxiliary code (format XXXX YYYY). "YYYY" indicates the problem (see actions for each code below).
	0000	The drive was stopped before the autotune routine finished.	Repeat autotune until successful.
	0001	The drive was started but was not ready to follow the autotune command.	Make sure the prerequisites of the autotune run are fulfilled. See section Before activating the autotune routine (page 127).
	0002	Required torque reference could not be reached before the drive reached maximum speed.	Decrease torque step (parameter 25.38) or increase speed step (25.39).
	0003	Motor could not accelerate/decelerate to maximum/minimum speed.	Increase torque step (parameter 25.38) or decrease speed step (25.39).
	0005	Motor could not decelerate with full autotune torque.	Decrease torque step (parameter 25.38) or speed step (25.39).
AFAA	Autoreset	A fault is about to be autoreset.	Informative warning. See the settings in parameter group 31 Fault functions.
AFE1	Emergency stop (off2)	Drive has received an emergency stop (mode selection off2) command.	Check that it is safe to continue operation. Then return emergency stop push button to normal position. Restart
AFE2	Emergency stop (off1 or off3)	Drive has received an emergency stop (mode selection off1 or off3) command.	drive.   If the emergency stop was unintentional, check the source selected by parameter 21.05 Emergency stop source.
AFE9	Start delay	The start delay is active and the drive will start the motor after a predefined delay.	Informative warning. See parameter 21.22 Start delay.


Code (hex)	Warning / Aux. code	Cause	What to do
AFEB	Run enable missing	No run enable signal is received.	Check setting of parameter 20.12 Run enable 1 source. Switch signal on (for example, in the fieldbus Control Word) or check wiring of selected source.
AFED	Enable to rotate	Signal to rotate has not been received within a fixed time delay of 240 s .	Switch enable to rotate signal on ((for example, in digital inputs).   Check the setting of (and source selected by) parameter 20.22 Enable to rotate.
AFF6	Identification run	Motor ID run will occur at next start.	Informative warning.
AFF8	Motor heating active	Pre-heating is being performed	Informative warning.   Motor pre-heating is active. Current specified by parameter 21.16 Preheating current is being passed through the motor.
B5A0	STO event   Programmable event: 31.22 STO indication run/stop	Safe torque off function is active, ie. safety circuit signal(s) connected to connector STO is lost.	Informative warning.   Check safety circuit connections. For more information, see chapter The Safe torque off function in the Hardware manual of the drive and description of parameter 31.22 STO indication run/stop (page 313).
D501	No more available PFC motors	No more PFC motors can be started because they can be interlocked or in the Hand mode.	Check that there are no interlocked PFC motors, see parameters: 76.81...76.84. If all motors are in use, the PFC system is not adequately dimensioned to handle the demand.
D502	All motors interlocked	All the motors in the PFC system are interlocked.	Check that there are no interlocked PFC motors, see parameters $76.81 \ldots 76.84$.
D503	VSD controlled PFC motor interlocked	The motor connected to the drive is interlocked (unavailable).	Motor connected to the drive is interlocked and thus cannot be started. Remove the corresponding interlock to start the drive controlled PFC motor. See parameters 76.81...76.84.

## Fault messages

Code (hex)	Fault / Aux. code	Cause	What to do
1080	Backup/Restore timeout	Control panel or PC tool has failed to communicate with the drive when backup was being made or restored.	Request backup or restore again.
1081	Rating ID fault	Drive software has not been able to read the rating ID of the drive.	Reset the fault to make the drive try to reread the rating ID.   If the fault reappears, cycle the power to the drive. You may have to be repeat this. If the fault persists, contact your local ABB representative.
2281	Calibration	Measured offset of output phase current measurement or difference between output phase U2 and W2 current measurement is too great (the values are updated during current calibration).	Try performing the current calibration again (select Current measurement calibration at parameter 99.13). If the fault persists, contact your local ABB representative.   Auxiliary codes are shown below.
	0001	Too high offset error in Uphase current.	
	0002	Too high offset error in Vphase current.	
	0003	Too high offset error in Wphase current.	
	0004	Too high gain difference detected between phase current measurements.	
2310	Overcurrent	Output current has exceeded internal fault limit.   In addition to an actual overcurrent situation, this fault may also be caused by an earth fault or supply phase loss.	Check motor load.   Check acceleration times in parameter group 23 Speed reference ramp (speed control), 26 Torque reference chain (torque control) or 28 Frequency reference chain (frequency control). Also check parameters 46.01 Speed scaling, 46.02 Frequency scaling and 46.03   Torque scaling.   Check motor and motor cable (including phasing and delta/star connection).   Check there are no contactors opening and closing in motor cable.   Check that the start-up data in parameter group 99 corresponds to the motor rating plate.   Check that there are no power factor correction capacitors or surge absorbers in motor cable.   Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. See chapter Electrical installation, section Checking the insulation of the assembly in the Hardware manual of the drive.


$\begin{array}{\|l\|l} \text { Code } \\ \text { (hex) } \end{array}$	Fault / Aux. code	Cause	What to do
2330	Earth leakage	Drive has detected load unbalance typically due to earth fault in motor or motor cable.	Check there are no power factor correction capacitors or surge absorbers in motor cable.   Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. Try running the motor in scalar control mode if allowed. (See parameter 99.04 Motor control mode.)   If no earth fault can be detected, contact your local ABB representative.
2340	Short circuit	Short-circuit in motor cable(s) or motor	Check motor and motor cable for cabling errors.   Check there are no power factor correction capacitors or surge absorbers in motor cable.   Cycle the power to the drive.
	0080	State feedback from output phases does not match control signals.   For frames R6 and R7.	
2381	IGBT overload	Excessive IGBT junction to case temperature. This fault protects the IGBT(s) and can be activated by a short circuit in the motor cable.	Check motor cable.   Check ambient conditions.   Check air flow and fan operation. Check heatsink fins for dust pick-up. Check motor power against drive power.
3130	Input phase loss   Programmable fault: 31.21   Supply phase loss	Intermediate circuit DC voltage is oscillating due to missing input power line phase or blown fuse.	Check input power line fuses. Check for loose power cable connections. Check for input power supply imbalance.
3181	Wiring or earth fault Programmable fault: 31.23 Wiring or earth fault	Incorrect input power and motor cable connection (ie. input power cable is connected to drive motor connection).	Check input power connections.
3210	DC link overvoltage	Excessive intermediate circuit DC voltage.	Check that overvoltage control is on (parameter 30.30 Overvoltage control). Check that the supply voltage matches the nominal input voltage of the drive. Check the supply line for static or transient overvoltage.   Check brake chopper and resistor (if present).   Check deceleration time.   Use coast-to-stop function (if applicable). Retrofit drive with brake chopper and brake resistor.   Check that the brake resistor is dimensioned properly and the resistance is between acceptable range for the drive.


Code   (hex)	Fault / Aux. code	Cause	What to do
3220	DC link undervoltage	Intermediate circuit DC voltage   is not sufficient because of a   missing supply phase, blown   fuse or fault in the rectifier   bridge.	Check supply cabling, fuses and   switchgear.
3381	Output phase loss   Programmable faul: 31.19   Motor phase loss	Motor circuit fault due to   missing motor connection (all   three phases are not   connected).	Connect motor cable.

$\left.\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Code } \\ \text { (hex) }\end{array} & \text { Fault / Aux. code } & \text { Cause } & \text { What to do } \\ \hline 4991 & \begin{array}{l}\text { Safe motor } \\ \text { temperature }\end{array} & \begin{array}{l}\text { The CPTC-02 module } \\ \text { indicates overtemperature: } \\ \text { motor temperature is too } \\ \text { high, or } \\ \text { the thermistor is in short- } \\ \text { circuit or disconnected }\end{array} & \begin{array}{l}\text { Check the cooling of the motor. } \\ \text { Check the motor load and drive ratings. } \\ \text { Check the wiring of the temperature } \\ \text { sensor. Repair wiring if faulty. } \\ \text { Measure the resistance of the sensor. } \\ \text { Replace the sensor if faulty. }\end{array} \\ \hline 5080 & \text { Fan } & \text { Auxiliary fan broken } & \begin{array}{l}\text { Cooling fan feedback missing. } \\ \text { For frame sizes R6 or larger. }\end{array} \\ \hline 5081 & \begin{array}{l}\text { See A581 Fan (page 484). } \\ \text { (connected to the fan } \\ \text { connectors on the control unit) } \\ \text { is stuck or disconnected. }\end{array} & \begin{array}{l}\text { Check the auxiliary code. } \\ \text { Check auxiliary fan(s) and connection(s). } \\ \text { Replace fan if faulty. } \\ \text { Make sure the front cover of the drive is } \\ \text { in place and tightened. } \\ \text { If the commissioning of the drive requires } \\ \text { th the cover is off, activate parameter } \\ \text { 31.36 Aux fan fault function within 2 min } \\ \text { from control unit reboot to temporarily } \\ \text { suppress the fault. } \\ \text { Reboot the control unit (using parameter } \\ \text { 96.08 Control board boot) or by cycling } \\ \text { power. }\end{array} \\ \hline 5089 & \begin{array}{l}\text { SMT circuit } \\ \text { malfunction }\end{array} & \begin{array}{l}\text { I/O communication } \\ \text { loss }\end{array} & \begin{array}{l}\text { Communication failure to } \\ \text { standard I/O. }\end{array} \\ \hline 5094 & \begin{array}{l}\text { Measurement circuit } \\ \text { temperature }\end{array} & \begin{array}{l}\text { Problem with internal } \\ \text { temperature measurement of } \\ \text { the drive. }\end{array} & \begin{array}{l}\text { Safe motor temperature fault is } \\ \text { generated and STO } \\ \text { event/fault/warning is not } \\ \text { generated. } \\ \text { Note: If only one STO channel } \\ \text { is opened, fault 5090 STO } \\ \text { hardware failure is generated. }\end{array}\end{array} \begin{array}{l}\text { Try resetting the fault or cycle the power } \\ \text { to the drive. }\end{array}\right] \begin{array}{l}\text { Check connection between the relay } \\ \text { output of the module and the STO } \\ \text { terminal. }\end{array}\right\}$

$\begin{aligned} & \hline \text { Code } \\ & \text { (hex) } \end{aligned}$	Fault / Aux. code	Cause	What to do
50A0	Fan	Cooling fan stuck or disconnected.	Check fan operation and connection. Replace fan if faulty.
5681	PU communication	Communication errors detected between the drive control unit and the power unit.	Check the connection between the drive control unit and the power unit. Check the value of parameter 95.04 Control board supply.
5682	Power unit lost	Connection between the drive control unit and the power unit is lost.	Check the connection between the control unit and the power unit.
5691	Measurement circuit ADC	Measurement circuit fault.	Contact your local ABB representative.
5692	PU board powerfail	Power unit power supply failure.	Contact your local ABB representative.
5693	```Measurement circuit DFF```	Measurement circuit fault.	Contact your local ABB representative.
5697	Charging feedback	Charging feedback signal missing.	Check the feedback signal coming from the charging system
5698	Unknown PU fault	The power unit logic has generated a fault which is not known by the software.	Check the logic and software compatibility.
6181	FPGA version incompatible	Firmware and FPGA versions are incompatible.	Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative
6200	Checksum mismatch	Parameter checksum 96.68 Actual checksumA does not match 96.71 Approved checksum $A$ and/ or parameter checksum 96.69 Actual checksumB does not match 96.72 Approved checksum B.	Revert parameter changes made after approving the checksum.   If parameter changes are valid, approve new checksum by setting parameter 96.55 Checksum control word bit 12 (Set approved checksum A) and/or 13 (Set approved checksum B) to $1=$ Set.
6306	FBA A mapping file	Fieldbus adapter A mapping file read error.	Contact your local ABB representative.
6481	Task overload	Internal fault.	Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative
6487	Stack overflow	Internal fault.	Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative
64A1	Internal file load	File read error.	Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative
64A4	Rating ID fault	Rating ID load error.	Contact your local ABB representative.


$\begin{aligned} & \text { Code } \\ & \text { (hex) } \end{aligned}$	Fault / Aux. code	Cause	What to do
64A6	Adaptive program	Error running the adaptive program.	Check the auxiliary code (format XXYY ZZZZ).   "XX" specifies the number of the state ( $00=$ base program) and " $Y Y$ " specifies the number of the function block (0000=generic error).   "ZZZZ" indicates the problem.
	000A	Program corrupted or block non-existent	Restore the template program or download the program to the drive.
	000C	Required block input missing	Check the inputs of the block.
	000E	Program corrupted or block non-existent	Restore the template program or download the program to the drive.
	0011	Program too large.	Remove blocks until the error stops.
	0012	Program is empty.	Correct the program and download it to the drive.
	001C	A non-existing parameter or block is used in the program.	Edit the program to correct the parameter reference, or to use an existing block.
	001D	Parameter type invalid for selected pin.	Edit the program to correct the parameter reference.
	001E	Output to parameter failed because the parameter was write-protected.	Check the parameter reference in the program.   Check for other sources affecting the target parameter.
	0023	Program file incompatible with current firmware version.	Adapt the program to current block library and firmware version.
	0024		
	Other	-	Contact your local ABB representative, quoting the auxiliary code.
64B1	Internal SSW fault	Internal fault.	Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative.
64B2	User set fault	Loading of user parameter set failed because   - requested set does not exist   - set is not compatible with control program   - drive was switched off during loading.	Ensure that a valid user parameter set exists. Reload if uncertain.
64B3	Macro parameterization error	Macro parameterization failed, for example, because parameter default value that cannot be changed has been attempted to write.	
64E1	Kernel overload	Operating system error.	Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact your local ABB representative.
6581	Parameter system	Parameter load or save failed.	Try forcing a save using parameter 96.07 Parameter save manually. Retry.


$\begin{aligned} & \hline \text { Code } \\ & \text { (hex) } \end{aligned}$	Fault / Aux. code	Cause	What to do
6591	Backup/Restore timeout	During backup creating or restoring operation a control panel or PC-tool has failed to communicate with the drive as part this operation.	Check control panel or PC-tool communication and if it is still in backup or restore state.
65A1	FBA A parameter conflict	The drive does not have a functionality requested by PLC, or requested functionality has not been activated.	Check PLC programming.   Check settings of parameter groups 50 Fieldbus adapter (FBA) and 51 FBA A settings.
6681	EFB comm loss Programmable fault: 58.14 Communication loss action	Communication break in embedded fieldbus (EFB) communication.	Check the status of the fieldbus master (online/offline/error etc.).   Check cable connections to the EIA-485/X5 terminals 29, 30 and 31 on the control unit.
6682	EFB config file	Embedded fieldbus (EFB) configuration file could not be read.	Contact your local ABB representative.
6683	EFB invalid parameterization	Embedded fieldbus (EFB) parameter settings inconsistent or not compatible with selected protocol.	Check the settings in parameter group 58 Embedded fieldbus.
6684	EFB load fault	Embedded fieldbus (EFB) protocol firmware could not be loaded.   Version mismatch between EFB protocol firmware and drive firmware.	Contact your local ABB representative.
6685	EFB fault 2	Fault reserved for the EFB protocol application.	Check the documentation of the protocol.
6686	EFB fault 3	Fault reserved for the EFB protocol application.	Check the documentation of the protocol.
6882	Text 32-bit table overflow	Internal fault.	Reset the fault. Contact your local ABB representative if the fault persists.
6885	Text file overflow	Internal fault.	Reset the fault. Contact your local ABB representative if the fault persists.
7081	Control panel loss Programmable fault: 49.05 Communication loss action	Control panel or PC tool selected as active control location for drive has ceased communicating.	Check PC tool or control panel connection.   Check control panel connector. Disconnect and reconnect the control panel.
7085	Incompatible option module	Fieldbus option module not supported.	Replace the module with a supported type.
7086	I/O module AI Overvoltage	Overvoltage detected in AI . AI is changed to voltage mode. AI will return automatically back to mA mode when the AI signal level is in accepted limits.	Check AI signal levels.
7121	Motor stall   Programmable fault: 31.24   Stall function	Motor is operating in stall region because of, for example, excessive load or insufficient motor power.	Check motor load and drive ratings. Check fault function parameters.


Code (hex)	Fault / Aux. code	Cause	What to do
7122	Motor overload	Motor current is too high.	Check for overloaded motor.   Adjust the parameters used for the motor overload function (35.51...35.53) and 35.55...35.56.
7181	Brake resistor	Brake resistor broken or not connected.	Check that a brake resistor has been connected.   Check the condition of the brake resistor. Check the dimensioning of the brake resistor.
7183	BR excess temperature	Brake resistor temperature has exceeded fault limit defined by parameter 43.11 Brake resistor fault limit.	Stop drive. Let resistor cool down.   Check resistor overload protection function settings (parameter group 43 Brake chopper).   Check fault limit setting, parameter 43.11 Brake resistor fault limit.   Check that braking cycle meets allowed limits.
7184	Brake resistor wiring	Brake resistor short circuit or brake chopper control fault.	Check brake chopper and brake resistor connection.   Ensure brake resistor is not damaged.
7191	BC short circuit	Short circuit in brake chopper IGBT.	Ensure brake resistor is connected and not damaged.   Check the electrical specifications of the brake resistor against chapter Resistor braking in the Hardware manual of the drive.   Replace brake chopper (if replaceable).
7192	BC IGBT excess temperature	Brake chopper IGBT temperature has exceeded internal fault limit.	Let chopper cool down.   Check for excessive ambient temperature.   Check for cooling fan failure.   Check for obstructions in the air flow.   Check resistor overload protection function settings (parameter group 43 Brake chopper).   Check that braking cycle meets allowed limits.   Check that drive supply AC voltage is not excessive.
7310	Overspeed	Motor is turning faster than highest allowed speed due to incorrectly set minimum/maximum speed, insufficient braking torque or changes in load when using torque reference.	Check minimum/maximum speed settings, parameters 30.11 Minimum speed and 30.12 Maximum speed. Check adequacy of motor braking torque. Check applicability of torque control. Check need for brake chopper and resistor(s).
73B0	Emergency ramp failed	Emergency stop did not finish within expected time.	Check the settings of parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay. Check the predefined ramp times (23.11...23.15 for mode Off1, 23.23 for mode Off3).
73F0	Overfrequency	Maximum allowed output frequency exceeded.	Check the auxiliary code.


$\begin{array}{l}\text { Code } \\ \text { (hex) }\end{array}$	Fault / Aux. code	Cause	What to do
	00FA		$\begin{array}{l}\text { Motor is turning faster than the } \\ \text { highest allowed frequency due } \\ \text { to incorrectly set } \\ \text { minimum/maximum frequency } \\ \text { or the motor rushes because of } \\ \text { too high supply voltage or } \\ \text { incorrect supply voltage } \\ \text { selection in parameter 95.01 } \\ \text { Supply voltage. }\end{array}$

settings, parameters 30.13 Minimum <br>
frequency and 30.14 Maximum <br>
frequency. <br>
Check used supply voltage and voltage <br>
selection parameter 95.01 Supply <br>
voltage.\end{array}\right]\)

Code (hex)	Fault / Aux. code	Cause	What to do
80B4	Signal supervision 5 (Editable message text) Programmable fault: 32.46 Supervision 5 action	Fault generated by the signal supervision function 5.	Check the source of the fault (parameter 32.47 Supervision 5 signal).
80B5	Signal supervision 6 (Editable message text) Programmable fault: 32.56 Supervision 6 action	Fault generated by the signal supervision function 6.	Check the source of the fault (parameter 32.57 Supervision 6 signal).
9081	External fault 1   (Editable message text) Programmable fault: 31.01 External event 1 source 31.02 External event 1 type	Fault in external device 1.	Check the external device. Check setting of parameter 31.01 External event 1 source.
9082	External fault 2   (Editable message text) Programmable fault: 31.03 External event 2 source 31.04 External event 2 type	Fault in external device 2.	Check the external device. Check setting of parameter 31.03 External event 2 source.
9083	External fault 3   (Editable message text) Programmable fault: 31.05 External event 3 source 31.06 External event 3 type	Fault in external device 3.	Check the external device.   Check setting of parameter 31.05   External event 3 source.
9084	External fault 4   (Editable message text) Programmable fault: 31.07 External event 4 source 31.08 External event 4 type	Fault in external device 4.	Check the external device.   Check setting of parameter 31.07   External event 4 source.
9085	External fault 5   (Editable message text) Programmable fault: 31.09 External event 5 source 31.10 External event 5 type	Fault in external device 5.	Check the external device.   Check setting of parameter 31.09   External event 5 source.
FA81	Safe torque off 1	Safe torque off function is active, ie. STO circuit 1 is broken.	Check safety circuit connections. For more information, see chapter The Safe torque off function in the Hardware
FA82	Safe torque off 2	Safe torque off function is active, ie. STO circuit 2 is broken.	manual of the drive and description of parameter 31.22 STO indication run/stop (page 313).   Check the value of parameter 95.04 Control board supply.


Code   (hex)	Fault / Aux. code	Cause	What to do
FF61	ID run	Motor ID run was not   completed successfully.	Check the nominal motor values in   parameter group 99 Motor data.   Check that no external control system is   connected to the drive.   Cycle the power to the drive (and its   control unit, if powered separately).   Check that no operation limits prevent   the completion of the ID run. Restore   parameters to default settings and try   again.   Check that the motor shaft is not locked.   Check the auxiliary code. The second   number of the code indicates the   problem (see actions for each code   below).


Code   (hex)	Fault / Aux. code	Cause	What to do
	000 C	(Permanent magnet motors   only)   First acceleration did not finish   within reasonable time.	Contact your local ABB representative.
	000 D	(Permanent magnet motors   only)   Second acceleration did not   finish within reasonable time.	Contact your local ABB representative.
	$000 \mathrm{E} . .0010$	Internal error.	Contact your local ABB representative.
0011	(Synchronous reluctance   motors only)   Pulse test error.	Contact your local ABB representative.	
00012	Motor too large for advanced   standstill ID run.	Check that the motor and drive sizes are   compatible.   Contact your local ABB representative.	
	0013	(Asynchronous motors only)   Motor data error.	Check that the motor nominal value   settings in the drive are the same as in   the motor nameplate.   Contact your local ABB representative.
FF63	STO diagnostics   failure.	SW internal malfunction.	Reboot the control unit (using parameter   96.08 Control board boot) or by cycling   power.
FF81	FB A force trip	A fault trip command has been   received through fieldbus   adapter A.	Check the fault information provided by   the PLC.
FF8E	EFB force trip	A fault trip command has been   received through the   embedded fieldbus interface.	Check the fault information provided by   the PLC.

## 10

## Fieldbus control through the embedded fieldbus interface (EFB)

## What this chapter contains

The chapter describes how the drive can be controlled by external devices over a communication network (fieldbus) using the embedded fieldbus interface.

## System overview

The drive can be connected to an external control system through a communication link using either a fieldbus adapter or the embedded fieldbus interface.

The embedded fieldbus interface supports the Modbus RTU protocol. The drive control program can handle 10 Modbus registers in a 10-millisecond time level. For example, if the drive receives a request to read 20 registers, it will start its response within 22 ms of receiving the request -20 ms for processing the request and 2 ms overhead for handling the bus. The actual response time depends on other factors as well, such as the baud rate (a parameter setting in the drive).

The drive can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the embedded fieldbus interface and other available sources, for example, digital and analog inputs.


## Connecting the drive to the fieldbus

Connect terminal block X5 on the control unit of the drive to the fieldbus. The connection diagram is shown below.

Use preferably three conductors and a shield for the connection.
 terminal in the building automation controller.

## Setting up the embedded fieldbus interface

Set the drive up for the embedded fieldbus communication with the parameters shown in the table below. The Setting for fieldbus control column gives either the value to use or the default value. The Function/Information column gives a description of the parameter.

Parameter	Setting for fieldbus control	Function/Information
COMMUNICATION INITIALIZATION		
58.01 Protocol enable	Modbus RTU	Initializes embedded fieldbus communication.
EMBEDDED MODBUS CONFIGURATION		
58.03 Node address	1 (default)	Node address. There must be no two nodes with the same node address online.
58.04 Baud rate	19.2 kbps (default)	Defines the communication speed of the link. Use the same setting as in the master station.
58.05 Parity	8 EVEN 1 (default)	Selects the parity and stop bit setting. Use the same setting as in the master station.
58.14Communication   loss action	Fault (default)	Defines the action taken when a communication loss is detected.
58.15 Communication   loss mode	Cw/Ref1 / Ref2 (default)	Enables/disables communication loss monitoring and defines the means for resetting the counter of the communication loss delay.
$58.16 \begin{aligned} & \text { Communication } \\ & \text { loss time }\end{aligned}$	3.0 s (default)	Defines the timeout limit for the communication monitoring.
58.17 Transmit delay	0 ms (default)	Defines a response delay for the drive.
58.25 Control profile	ABB Drives (default)	Selects the control profile used by the drive. See section Basics of the embedded fieldbus interface (page 511).
58.26 EFB ref1 type   58.27 EFB ref2 type	Speed or frequency (default for 58.26), Transparent, General, Torque (default for 58.27), Speed, Frequency	Defines the types of fieldbus references 1 and 2. The scaling for each reference type is defined by parameters 46.01...46.03. With the Speed or frequency setting, the type is selected automatically according to the currently active drive control mode.
58.28 EFB act1 type   58.29 EFB act2 type	Speed or frequency (default for 58.28), Transparent (default for 58.29), General, Torque, Speed, Frequency	Defines the types of actual values 1 and 2. The scaling for each actual value type is defined by parameters 46.01...46.03. With the Speed or frequency setting, the type is selected automatically according to the currently active drive control mode.


Parameter	Setting for   fieldbus control	Function/Information	
58.31 EFB act1   transparent   source   EFB act2   transparent   source	Other	Defines the source of actual values 1 and 2   when the 58.26 EFB ref1 type (58.27 EFB   ref2 type) is set to Transparent.	
58.33	Addressing   mode	Mode 0 (default)	Defines the mapping between parameters   and holding registers in the 400001...465536   (100...65535) Modbus register range.
58.34	Word order	LO-HI (default)	Defines the order of the data words in the   Modbus message frame.
58.101 Data I/O 1 $\ldots$	For example, the   default settings   (I/Os 1...6 contain   the control word,   the status word,   two references and   two actual values)   RO/DIO control   Dord,   word, AO1 data   storage, AO2 data   storage, Feedback   data storage,   Setpoint data   storage	Defines the address of the drive parameter   which the Modbus master accesses when it   reads from or writes to the register address   corresponding to Modbus In/Out parameters.   Select the parameters that you want to read   or write through the Modbus I/O words.   These settings write the incoming data into   storage parameters 10.99 RO/DIO control   word, 13.91 AO1 data storage, 13.92 AO2   data storage, 40.91 Feedback data storage or   40.92 Setpoint data storage.	
58.06	Communication   control	Refresh settings	Validates the settings of the configuration   parameters.

The new settings will take effect when the drive is powered up the next time, or when they are validated by parameter 58.06 Communication control (Refresh settings).

## Setting the drive control parameters

After the embedded fieldbus interface has been set up, check and adjust the drive control parameters listed in the table below. The Setting for fieldbus control column gives the value or values to use when the embedded fieldbus signal is the desired source or destination for that particular drive control signal. The Function/Information column gives a description of the parameter.

Parameter	Setting for   fieldbus control	Function/Information
CONTROL COMMAND SOURCE SELECTION     20.01 Ext1   commands Embedded fieldbus Selects fieldbus as the source for the start   and stop commands when EXT1 is selected   as the active control location.		


Parameter	Setting for   fieldbus control	Function/Information
20.06 Ext2   commands Embedded fieldbus Selects fieldbus as the source for the start   and stop commands when EXT2 is selected   as the active control location.		


SPEED REFERENCE SELECTION		Selects a reference received through the   embedded fieldbus interface as speed   reference 1.
22.11 Ext1 speed ref1	EFB ref1	Selects a reference received through the   embedded fieldbus interface as speed   reference 2.
22.18 Ext2 speed ref1	EFB ref1	


TORQUE REFERENCE SELECTION	EFB ref1	Selects a reference received through the   embedded fieldbus interface as torque   reference 1.
26.11 Torque ref1   source	Selects a reference received through the   embedded fieldbus interface as torque   reference 2.	
26.12 Torque ref2   source	EFB ref1	


FREQUENCY REFERENCE SELECTION		
28.11 Ext1 frequency   ref1	EFB ref1	Selects a reference received through the   embedded fieldbus interface as frequency   reference 1.
28.15 Ext2 frequency   ref1	EFB ref1	Selects a reference received through the   embedded fieldbus interface as frequency   reference 2.

## OTHER SELECTIONS

EFB references can be selected as the source at virtually any signal selector parameter by selecting Other, then either 03.09 EFB reference 1 or 03.10 EFB reference 2.

SYSTEM CONTROL INPUTS		
96.07 Parametersave   manually	Save (reverts to   Done)	Saves parameter value changes (including   those made through fieldbus control) to   permanent memory.

## Basics of the embedded fieldbus interface

The cyclic communication between a fieldbus system and the drive consists of 16-bit data words or 32-bit data words (with a transparent control profile).

The diagram below illustrates the operation of the embedded fieldbus interface. The signals transferred in the cyclic communication are explained further below the diagram.

Fieldbus network


1) See also other parameters which can be controlled through fieldbus.
2) Data conversion if parameter 58.25 Control profile is set to ABB Drives. See section About the control profiles (page 514).

## Control word and Status word

The Control Word (CW) is a 16-bit or 32-bit packed boolean word. It is the principal means of controlling the drive from a fieldbus system. The CW is sent by the fieldbus controller to the drive. With drive parameters, the user selects the EFB CW as the source of drive control commands (such as start/stop, emergency stop, selection between external control locations $1 / 2$, or fault reset). The drive switches between its states according to the bit-coded instructions of the CW.

The fieldbus CW is either written to the drive as it is or the data is converted. See section About the control profiles (page 514).

The fieldbus Status Word (SW) is a 16-bit or 32-bit packed boolean word. It contains status information from the drive to the fieldbus controller. The drive SW is either written to the fieldbus SW as it is or the data is converted. See section About the control profiles (page 514).

## References

EFB references 1 and 2 are 16-bit or 32-bit signed integers. The contents of each reference word can be used as the source of virtually any signal, such as the speed, frequency, torque or process reference. In embedded fieldbus communication, references 1 and 2 are displayed by 03.09 EFB reference 1 and 03.10 EFB reference 2 respectively. Whether the references are scaled or not depends on the settings of 58.26 EFB ref1 type and 58.27 EFB ref2 type. See section About the control profiles (page 514).

## Actual values

Fieldbus actual signals (ACT1 and ACT2) are 16-bit or 32-bit signed integers. They convey selected drive parameter values from the drive to the master. Whether the actual values are scaled or not depends on the settings of 58.28 EFB act1 type and 58.29 EFB act2 type. See section About the control profiles (page 514).

## Data input/outputs

Data input/outputs are 16-bit or 32-bit words containing selected drive parameter values. Parameters 58.101 Data I/O 1 ... 58.114 Data I/O 14 define the addresses from which the master either reads data (input) or to which it writes data (output).

## Register addressing

The address field of Modbus requests for accessing holding registers is 16 bits. This allows the Modbus protocol to support addressing of 65536 holding registers.

Historically, Modbus master devices used 5-digit decimal addresses from 40001 to 49999 to represent holding register addresses. The 5-digit decimal addressing limited to 9999 the number of holding registers that could be addressed.

Modern Modbus master devices typically provide a means to access the full range of 65536 Modbus holding registers. One of these methods is to use 6-digit decimal addresses from 400001 to 465536 . This manual uses 6-digit decimal addressing to represent Modbus holding register addresses.

Modbus master devices that are limited to the 5-digit decimal addressing may still access registers 400001 to 409999 by using 5-digit decimal addresses 40001 to 49999. Registers 410000-465536 are inaccessible to these masters.

See parameter 58.33 Addressing mode.
Note: Register addresses of 32-bit parameters cannot be accessed by using 5-digit register numbers.

## About the control profiles

A control profile defines the rules for data transfer between the drive and the fieldbus master, for example:

- if packed boolean words are converted and how
- if signal values are scaled and how
- how drive register addresses are mapped for the fieldbus master.

You can configure the drive to receive and send messages according to one of the two profiles:

- ABB Drives
- DCU Profile.

For the ABB Drives profile, the embedded fieldbus interface of the drive converts the fieldbus data to and from the native data used in the drive. The DCU Profile involves no data conversion or scaling. The figure below illustrates the effect of the profile selection.


Control profile selection with parameter 58.25 Control profile is:

- (0) ABB Drives
- (5) DCU Profile.


## Control Word

## Control Word for the ABB Drives profile

The table below shows the contents of the fieldbus Control Word for the ABB Drives control profile. The embedded fieldbus interface converts this word to the form in which it is used in the drive. The upper case boldface text refers to the states shown in State transition diagram for the ABB Drives profile on page 522.

Bit	Name	Value	STATE/Description
0	OFF1_   CONTROL	1	Proceed to READY TO OPERATE.
		0	Stop along currently active deceleration ramp. Proceed to   OFF1 ACTIVE; proceed to READY TO SWITCH ON   unless other interlocks (OFF2, OFF3) are active.
OFF2_-ROL			
CONTRO			


Bit	Name	Value	STATE/Description
7	RESET	0=>1	Fault reset if an active fault exists. Proceed to SWITCHON INHIBITED.   Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters.
		0	Continue normal operation.
8	JOGGING_1	1	Request running at Jogging 1 speed.   Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters.
		0	Continue normal operation.
9	JOGGING_2	1	Request running at Jogging 2 speed.   Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters.
		0	Continue normal operation.
10	$\begin{aligned} & \text { REMOTE_ } \\ & \text { CMD } \end{aligned}$	1	Fieldbus control d.
		0	Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference.   Control Word $=0$ and Reference $=0$ : Fieldbus control d. Reference and deceleration/acceleration ramp are locked.
11	$\begin{aligned} & \text { EXT_CTRL_ } \\ & \text { LOC } \end{aligned}$	1	Select External Control Location EXT2. Effective if the control location is parameterized to be selected from the fieldbus.
		0	Select External Control Location EXT1. Effective if the control location is parameterized to be selected from the fieldbus.
12	USER_0		Writable control bits that can be combined with drive logic for application-specific functionality.
13	USER_1		
14	USER_2		
15	USER_3		

## Control Word for the DCU Profile

The embedded fieldbus interface writes the fieldbus Control Word as is to the drive Control Word bits 0 to 15 . Bits 16 to 32 of the drive Control Word are not in use.

Bit	Name	Value	State/Description
0	STOP	1	Stop according to the Stop Mode parameter or the stop   mode request bits (bits 7...9).
		0	(no op)
1	START	1	Start the drive.
		0	(no op)


Bit	Name	Value	State/Description
2	REVERSE	1	Reverse direction of motor rotation.
		0	Direction of motor rotation depends on the sign of reference:   Positive reference: Forward   Negative reference: Reverse.
3	Reserved		
4	RESET	$0=>1$	Fault reset if an active fault exists.
		0	(no op)
5	EXT2	1	Select External control location EXT2. Effective if the control location is parameterized to be selected from the fieldbus.
		0	Select External control location EXT1. Effective if the control location is parameterized to be selected from the fieldbus.
6	RUN_DISABLE	1	Run disable. If the drive is set to receive the run enable signal from the fieldbus, this bit deactivates the signal.
		0	Run enable. If the drive is set to receive the run enable signal from the fieldbus, this bit activates the signal.
7	```STOPMODE_RA MP```	1	Normal ramp stop mode
		0	(no op) Default to parameter stop mode if bits $7 \ldots 9$ are all 0.
8	STOPMODE EM ERGENCY_RAM P	1	Emergency ramp stop mode.
		0	(no op) Default to parameter stop mode if bits 7... 9 are all 0.
9	$\begin{aligned} & \text { STOPMODE_CO } \\ & \text { AST } \end{aligned}$	1	Coast stop mode.
		0	(no op) Default to parameter stop mode if bits $7 \ldots 9$ are all 0.
10	RAMP_PAIR _2	1	Select ramp set 2 (Acceleration time 2 / Deceleration time 2) when parameter 23.11 Ramp set selection is set to EFB DCU CW bit 10.
		0	Select ramp set 1 (Acceleration time 1 / Deceleration time 1) when parameter 23.11 Ramp set selection is set to EFB DCU CW bit 10.
11	$\begin{aligned} & \text { RAMP_OUT_ZER } \\ & 0 \end{aligned}$	1	Force Ramp Function Generator output to zero. Drive ramps to stop (current and DC voltage limits in force).
		0	Normal operation.
12	RAMP_HOLD	1	Halt ramping (Ramp Function Generator output held).
		0	Normal operation.
13	RAMP_IN_ZERO	1	Force Ramp Function Generator input to zero.
		0	Normal operation.
14	$\begin{aligned} & \text { REQ_LOCAL_LO } \\ & \text { CK } \end{aligned}$	1	Drive does not switch to local control mode (see parameter 19.17 Local control disable).
		0	Drive can switch between local and remote control modes.


Bit	Name	Value	State/Description
15	TORQ_LIM_PAIR$\text { _ } 2$	1	Select torque limit set 2 (Minimum torque 2 / Maximum torque 2) when parameter 30.18 Torq lim se/ is set to EFB.
		0	Select torque limit set 1 (Minimum torque 1 / Maximum torque 1) when parameter 30.18 Torq lim se/ is set to EFB.
16	FB_LOCAL_CTL	1	Local mode for control from the fieldbus is requested. Steal control from the active source.
		0	(no op)
17	FB_LOCAL_REF	1	Local mode for reference from the fieldbus is requested. Steal reference from the active source.
		0	(no op)
18	Reserved for RUN_DISABLE_1		Not yet implemented.
19	Reserved		
20	Reserved		
21	Reserved		
22	USER_0		Writable control bits that can be combined with drive logic
23	USER_1		for application-specific functionality.
24	USER_2		
25	USER_3		
$\begin{aligned} & 26 \ldots \\ & 31 \end{aligned}$	Reserved		

## Status Word

## Status Word for the ABB Drives profile

The table below shows the fieldbus Status Word for the ABB Drives control profile. The embedded fieldbus interface converts the drive Status Word into this form for the fieldbus. The upper case boldface text refers to the states shown in State transition diagram for the ABB Drives profile on page 522.

Bit	Name	Value	STATE/Description
0	RDY_ON	1	READY TO SWITCH ON.
		0	NOT READY TO SWITCH ON.
1	RDY_RUN	1	READY TO OPERATE.
		0	OFF1 ACTIVE.
2	RDY_REF	1	OPERATION ENABLED.
		0	OPERATION INHIBITED.   See also parameter 06.18 Start inhibit status word (page 212).
3	TRIPPED	1	FAULT.
		0	No fault.
4	OFF_2_STATUS	1	OFF2 inactive.
		0	OFF2 ACTIVE.
5	OFF_3_STATUS	1	OFF3 inactive.
		0	OFF3 ACTIVE.
6	$\begin{aligned} & \text { SWC_ON_ } \\ & \text { INHIB } \end{aligned}$	1	SWITCH-ON INHIBITED.
		0	-
7	ALARM	1	Warning/Alarm.
		0	No warning/alarm.
8	AT SETPOINT	1	OPERATING. Actual value equals Reference (is within tolerance limits, for example, in speed control, speed error is $10 \%$ max. of nominal motor speed).
		0	Actual value differs from Reference (is outside tolerance limits).
9	REMOTE	1	Drive control location: REMOTE (EXT1 or EXT2).
		0	Drive control location: LOCAL.
10	$\begin{aligned} & \text { ABOVE_- } \\ & \text { LIMIT } \end{aligned}$	1	Actual frequency or speed equals or exceeds supervision limit (set by drive parameter). Valid in both directions of rotation.   Bit 10 of 06.17 Drive status word 2.
		0	Actual frequency or speed within supervision limit.


Bit	Name	Value	STATE/Description
11	USER_0		Status bits that can be combined with drive logic for
12	USER_1		application-specific functionality.
13	USER_2		
14	USER_3		
15	Reserved		

## Status Word for the DCU Profile

The embedded fieldbus interface writes the drive Status Word bits 0 to 15 to the fieldbus Status Word as is. Bits 16 to 32 of the drive Status Word are not in use.

Bit	Name	Value	State/Description
0	READY	1	Drive is ready to receive the start command.
		0	Drive is not ready.
1	ENABLED	1	External run enable signal is active.
		0	External run enable signal is not active.
2	STARTED	1	Drive has received start command.
		0	Drive has not received start command.
3	RUNNING	1	Drive is modulating.
		0	Drive is not modulating.
4	ZERO_SPEED	1	Drive is at zero speed.
		0	Drive is not at zero speed.
5	ACCELERATING	1	Drive speed is increasing.
		0	Drive speed is not increasing.
6	DECELERATING	1	Drive speed is decreasing.
		0	Drive speed is not decreasing.
7	AT_SETPOINT	1	Drive is at setpoint.
		0	Drive is not at setpoint.
8	LIMIT	1	Drive operation is limited.
		0	Drive operation is not limited.
9	SUPERVISION	1	Actual value (speed, frequency or torque) is above a limit. Limit is set with parameters 46.31...46.33.
		0	Actual value (speed, frequency or torque) is within limits.
10	REVERSE_REF	1	Drive reference is in the reverse direction.
		0	Drive reference is in the forward direction
11	REVERSE_ACT	1	Drive is running in the reverse direction
		0	Drive is running in the forward direction


Bit	Name	Value	State/Description
12	PANEL_LOCAL	1	Control panel/keypad (or PC tool) is in local control mode.
		0	Control panel/keypad (or PC tool) is not in local control mode.
13	FIELDBUS_LOCAL	1	Fieldbus is in local control mode.
		0	Fieldbus is not in local control mode.
14	EXT2_ACT	1	External control location EXT2 is active.
		0	External control location EXT1 is active.
15	FAULT	1	Drive is faulted.
		0	Drive is not faulted.
16	ALARM	1	Warning/Alarm is active.
		0	No warning/alarm.
17	Reserved		
18	DIRLOCK	1	Direction lock is ON. (Direction change is locked out.)
		0	Direction lock is OFF.
19	LOCALLOCK	1	Local mode lock is ON. (Local mode is locked out.)
		0	Local mode lock is OFF.
20	CTL_MODE	1	Vector motor control mode is active.
		0	Scalar motor control mode is active.
21	Reserved		
22	USER_0		Status bits that can be combined with drive logic for
23	USER_1		ap
24	USER_2		
25	USER_3		
26	REQ_CTL	1	Control has been granted to this channel.
		0	Control has not been granted to this channel.
27	REQ_REF	1	Reference has been granted to this channel.
		0	Reference has not been granted to this channel.
$\begin{aligned} & 28 \ldots \\ & 31 \end{aligned}$	Reserved		

## State transition diagrams

## State transition diagram for the ABB Drives profile

The diagram below shows the state transitions in the drive when the drive is using the ABB Drives profile and the drive is configured to follow the commands of the control word from the embedded fieldbus interface. The upper case texts refer to the states which are used in the tables representing the fieldbus Control and Status words. See sections Control Word for the ABB Drives profile on page 515 and Status Word for the $A B B$ Drives profile on page 519.


Start sequence:

- $476 \mathrm{~h} \rightarrow$ NOT READY TO SWITCH ON
- If MSW bit $0=1$ then
- $477 \mathrm{~h} \rightarrow$ READY TO SWITCH ON (Stopped)
- 47Fh $\rightarrow$ OPERATION (Running)

524 Fieldbus control through the embedded fieldbus interface (EFB)

Stop sequence:

- 477h = Stop according to 21.03 Stop mode
- 47Eh = OFF1 ramp stop (Note: uninterruptable ramp stop)

Fault reset:

- Rising edge of MCW bit 7

Start after STO:

- If 31.22 STO indication run/stop is not Fault/ Fault, check that 06.18 Start inhibit status word, bit 7 STO $=0$ before giving a start command.


## References

## References for the ABB Drives profile and DCU Profile

The ABB Drives profile supports the use of two references, EFB reference 1 and EFB reference 2. The references are 16-bit words each containing a sign bit and a 15-bit integer. A negative reference is formed by calculating the two's complement from the corresponding positive reference.

The references are scaled as defined by parameters 46.01...46.04; which scaling is in use depends on the setting of 58.26 EFB ref1 type and 58.27 EFB ref2 type (see page 397).

Fieldbus Drive	
$20000 \quad \begin{aligned} & 46.01 \text { (with speed reference) } \\ & 46.02 \text { (with frequency reference) }\end{aligned}$	
$100$	46.03 (with torque reference)   46.04 (with power reference)
$0-0$	
$-100$	-(46.03) (with torque reference)   -(46.04) (with power reference)
$-20000-$-(46.01) (with speed reference)	

The scaled references are shown by parameters 03.09 EFB reference 1 and 03.10 EFB reference 2.

## Actual values

## Actual values for the ABB Drives profile and DCU Profile

The ABB Drives profile supports the use of two fieldbus actual values, ACT1 and ACT2. The actual values are 16-bit words each containing a sign bit and a 15-bit integer. A negative value is formed by calculating the two's complement from the corresponding positive value.

The actual values are scaled as defined by parameters $46.01 \ldots 46.04$; which scaling is in use depends on the setting of parameters 58.28 EFB act1 type and 58.29 EFB act2 type (see page 397).

Fieldbus 4 Drive


## Modbus holding register addresses

## Modbus holding register addresses for the ABB Drives profile and DCU Profile

The table below shows the default Modbus holding register addresses for the drive data with the ABB Drives profile. This profile provides a converted 16-bit access to the drive data.

Note: Only the 16 least significant bits of the drive's 32-bit Control and Status Words can be accessed.

Note: Bits 16 through 32 of the DCU Control/Status word are not in use if 16-bit control/status word is used with the DCU Profile.

Register address	Register data (16-bit words)
400001	Default: Control word (CW 16bit). See sections Control Word for the   ABB Drives profile (page 515) and Control Word for the DCU Profile   (page 516).   The selection can be changed using parameter 58.101 Data I/O 1.
400002	Default: Reference 1 (Ref1 16bit).   The selection can be changed using parameter 58.102 Data I/O 2.
400003	Default: Reference 2 (Ref2 16bit).   The selection can be changed using parameter 58.102 Data I/O 2.
400004	Default: Status Word (SW 16bit). See sections Status Word for the   ABB Drives profile (page 519) and Status Word for the DCU Profile   (page 520).   The selection can be changed using parameter 58.102 Data I/O 2.
400005	Default: Actual value 1 (Act1 16bit).   The selection can be changed using parameter 58.105 Data I/O 5.
400006	Actual value 2 (Act2 16bit).   The selection can be changed using parameter 58.106 Data I/O 6.
$400007 \ldots 400014$	Data in/out 7...14.   Selected by parameters 58.107 Data I/O $7 \ldots 58.114$ Data I/O 14.
$400015 \ldots 400089$	Unused   $400090 \ldots 400100$   $400101 \ldots 465536$   Error code access. See section Error code registers (holding registers   $400090 . . .400100) ~(p a g e ~ 534) . ~$   Parameter read/write.   Parameters are mapped to register addresses according to parameter   58.33 Addressing mode.

## Modbus function codes

The table below shows the Modbus function codes supported by the embedded fieldbus interface.

Code	Function name	Description
01h	Read Coils	Reads the 0/1 status of coils (0X references).
02h	Read Discrete Inputs	Reads the $0 / 1$ status of discrete inputs (1X references).
03h	Read Holding Registers	Reads the binary contents of holding registers (4X references).
05h	Write Single Coil	Forces a single coil (0X reference) to 0 or 1.
06h	Write Single Register	Writes a single holding register (4X reference).
08h	Diagnostics	Provides a series of tests for checking the communication, or for checking various internal error conditions.   Supported subcodes:   - 00h Return Query Data: Echo/loopback test.   - 01h Restart Comm Option: Restarts and initializes the EFB, clears communications event counters.   - 04h Force Listen Only Mode   - OAh Clear Counters and Diagnostic Register   - OBh Return Bus Message Count   - OCh Return Bus Comm. Error Count   - ODh Return Bus Exception Error Count   - OEh Return Slave Message Count   - OFh Return Slave No Response Count   - 10h Return Slave NAK (negative acknowledge) Count   - 11h Return Slave Busy Count   - 12h Return Bus Character Overrun Count   - 14h Clear Overrun Counter and Flag
0Bh	Get Comm Event Counter	Returns a status word and an event count.
0Fh	Write Multiple Coils	Forces a sequence of coils (0X references) to 0 or 1.
10h	Write Multiple Registers	Writes the contents of a contiguous block of holding registers (4X references).
16h	Mask Write Register	Modifies the contents of a 4 X register using a combination of an AND mask, an OR mask, and the register's current contents.
17h	Read/Write Multiple Registers	Writes the contents of a contiguous block of 4 X registers, then reads the contents of another group of registers (the same or different than those written) in a server device.


Code	Function name	Description
2Bh / 0Eh	Encapsulated Interface Transport	Supported subcodes:   - OEh Read Device Identification: Allows reading the identification and other information.   Supported ID codes (access type):   - 00h: Request to get the basic device identification (stream access)   - 04h: Request to get one specific identification object (individual access)   Supported Object IDs:   - 00h: Vendor Name ("ABB")   - 01h: Product Code (for example, "ASCD2" or "ASCD4")   - 02h: Major Minor Revision (combination of contents of parameters 07.05 Firmware version and 58.02 Protocol ID).   - 03h: Vendor URL ("www.abb.com")   - 04h: Product name: ("ACS580").

## Exception codes

The table below shows the Modbus exception codes supported by the embedded fieldbus interface.

Code	Name	Description
01h	ILLEGAL FUNCTION	The function code received in the query is not an   allowable action for the server.
02h	ILLEGALADDRESS	The data address received in the query is not an   allowable address for the server.
03h	ILLEGAL VALUE	The requested quantity of registers is larger than the   device can handle. This error does not mean that a   value written to the device is outside of the valid   range.
04h	DEVICE FAILURE	An unrecoverable error occurred while the server was   attempting to perform the requested action. See   section Error code registers (holding registers   400090...400100) on page 534.

## Coils (0xxxx reference set)

Coils are 1-bit read/write values. Control Word bits are exposed with this data type. The table below summarizes the Modbus coils (0xxxx reference set). Note that the references are 1-based index which match the address transmitted on the wire.

Reference	ABB Drives profile	DCU Profile
000001	OFF1_CONTROL	STOP
000002	OFF2_CONTROL	START
000003	OFF3_CONTROL	Reserved
000004	INHIBIT_OPERATION	Reserved
000005	RAMP_OUT_ZERO	RESET
000006	RAMP_HOLD	EXT2
000007	RAMP_IN_ZERO	RUN_DISABLE
000008	RESET	STOPMODE_RAMP
000009	JOGGING_1	STOPMODE_EMERGENCY_RAMP
000010	JOGGING_2	STOPMODE_COAST
000011	REMOTE_CMD	Reserved
000012	EXT_CTRL_LOC	RAMP_OUT_ZERO
000013	USER_0	RAMP_HOLD
000014	USER_1	RAMP_IN_ZERO
000015	USER_2	Reserved
000016	USER_3	Reserved
000017	Reserved	FB_LOCAL_CTL
000018	Reserved	FB_LOCAL_REF
000019	Reserved	Reserved
000020	Reserved	Reserved
000021	Reserved	Reserved
000022	Reserved	Reserved
000023	Reserved	USER_0
000024	Reserved	USER_1
000025	Reserved	USER_2
000026	Reserved	USER_3
000027	Reserved	Reserved
000028	Reserved	Reserved
000029	Reserved	Reserved
000030	Reserved	Reserved
000031	Reserved	Reserved
000032	Reserved	Reserved


Reference	ABB Drives profile	DCU Profile
000033	Control for relay output RO1   (parameter 10.99 RO/DIO control   word, bit 0)	Control for relay output RO1   (parameter 10.99 RO/DIO control   word, bit 0)
000034	Control for relay output RO2   (parameter 10.99 RO/DIO control   word, bit 1)	Control for relay output RO2   (parameter 10.99 RO/DIO control   word, bit 1)
000035	Control for relay output RO3   (parameter 10.99 RO/DIO control   word, bit 2)	Control for relay output RO3   (parameter 10.99 RO/DIO control   word, bit 2)
000036	Control for relay output RO4   (parameter 10.99 RO/DIO control   word, bit 3)	Control for relay output RO4   (parameter 10.99 RO/DIO control   word, bit 3)
000037	Control for relay output RO5   (parameter 10.99 RO/DIO control   word, bit 4)	Control for relay output RO5   (parameter 10.99 RO/DIO control   word, bit 4)

## Discrete inputs (1xxxx reference set)

Discrete inputs are 1-bit read-only values. Status Word bits are exposed with this data type. The table below summarizes the Modbus discrete inputs (1xxxx reference set). Note that the references are 1-based index which match the address transmitted on the wire.

Reference	ABB Drives profile	DCU Profile
100001	RDY_ON	READY
100002	RDY_RUN	D
100003	RDY_REF	Reserved
100004	TRIPPED	RUNNING
100005	OFF_2_STATUS	ZERO_SPEED
100006	OFF_3_STATUS	Reserved
100007	SWC_ON_INHIB	Reserved
100008	ALARM	AT_SETPOINT
100009	AT_SETPOINT	LIMIT
100010	REMOTE	SUPERVISION
100011	ABOVE_LIMIT	Reserved
100012	USER_0	Reserved
100013	USER_1	PANEL_LOCAL
100014	USER_2	FIELDBUS_LOCAL
100015	USER_3	EXT2_ACT
100016	Reserved	FAULT
100017	Reserved	ALARM
100018	Reserved	Reserved
100019	Reserved	Reserved
100020	Reserved	Reserved
100021	Reserved	CTL_MODE
100022	Reserved	Reserved
100023	Reserved	USER_0
100024	Reserved	USER_1
100025	Reserved	USER_2
100026	Reserved	USER_3
100027	Reserved	REQ_CTL
100028	Reserved	Reserved
100029	Reserved	Reserved
100030	Reserved	Reserved
100031	Reserved	Reserved
100032	Reserved	Reserved


Reference	ABB Drives profile	DCU Profile
100033	Delayed status of digital input   DI1 (parameter 10.02 DI   delayed status, bit 0)	Delayed status of digital input   DI1 (parameter 10.02 DI   delayed status, bit 0)
100034	Delayed status of digital input   DI2 (parameter 10.02 DI   delayed status, bit 1)	Delayed status of digital input   DI2 (parameter 10.02 DI   delayed status, bit 1)
100035	Delayed status of digital input   DI3 (parameter 10.02 DI   delayed status, bit 2)	Delayed status of digital input   DI3 (parameter 10.02 DI   delayed status, bit 2)
100036	Delayed status of digital input   DI4 (parameter 10.02 DI   delayed status, bit 3)	Delayed status of digital input   DI4 (parameter 10.02 DI   delayed status, bit 3)
100037	Delayed status of digital input   DI5 (parameter 10.02 DI   delayed status, bit 4)	Delayed status of digital input   DI5 (parameter 10.02 DI   delayed status, bit 4)
100038	Delayed status of digital input   DI6 (parameter 10.02 DI   delayed status, bit 5)	Delayed status of digital input   DI6 (parameter 10.02 DI   delayed status, bit 5)

## Error code registers (holding registers 400090...400100)

These registers contain information about the last query. The error register is cleared when a query has finished successfully.

Reference	Name	Description
400090	Reset Error Registers	1 = Reset internal error registers (91...95). 0 = Do   nothing.
400091	Error Function Code	Function code of the failed query.
400092	Error Code	Set when exception code 04h is generated (see table   above).   - 00h No error   - 02h Low/High limit exceeded   - 03h Faulty Index: Unavailable index of an array   parameter   - 05h Incorrect Data Type: Value does not match the   data type of the parameter   - 65h General Error: Undefined error when handling   query
400093	Failed Register	The last register (discrete input, coil, input register or   holding register) that failed to be read or written.
400094	Last Register Written   Successfully	The last register (discrete input, coil, input register or   holding register) that was written successfully.
400095	Last Register Read   Successfully	The last register (discrete input, coil, input register or   holding register) that was read successfully.

## Fieldbus control through a fieldbus adapter

## What this chapter contains

This chapter describes how the drive can be controlled by external devices over a communication network (fieldbus) through an optional fieldbus adapter module.

The fieldbus control interface of the drive is described first, followed by a configuration example.

## System overview

The drive can be connected to an external control system through an optional fieldbus adapter ("fieldbus adapter A" = FBA A) mounted onto the control unit of the drive. The drive can be configured to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources such as digital and analog inputs, depending on how control locations EXT1 and EXT2 are configured.

Fieldbus adapters are available for various communication systems and protocols, for example

- CANopen (FCAN-01 adapter)
- ControlNet (FCNA-01 adapter)
- DeviceNet ${ }^{\text {TM }}$ (FDNA-01 adapter)
- Ethernet POWERLINK (FEPL-02 adapter)
- EtherCAT (FECA-01 adapter)
- EtherNet/IP ${ }^{\text {TM }}$ (FENA-21 adapter)
- Modbus/RTU (FSCA-01 adapter)
- Modbus/TCP (FMBT-21, FENA-21 adapter)
- PROFINET IO (FENA-21 adapter)
- PROFIBUS DP (FPBA-01 adapter)

Note: The text and examples in this chapter describe the configuration of one
fieldbus adapter (FBAA) by parameters $50.01 \ldots 50.18$ and parameter groups 51 FBA A settings... 53 FBA A data out.


## Basics of the fieldbus control interface

The cyclic communication between a fieldbus system and the drive consists of 16- or 32-bit input and output data words. The drive is able to support a maximum of 12 data words (16 bits) in each direction.

Data transmitted from the drive to the fieldbus controller is defined by parameters 52.01 FBA A data in1 ... 52.12 FBA A data in12. The data transmitted from the fieldbus controller to the drive is defined by parameters 53.01 FBA A data out1 ... 53.12 FBA A data out12.

Fieldbus network


1) See also other parameters which can be controlled from fieldbus.
2) The maximum number of data words used is protocol-dependent.
3) Profile/instance selection parameters. Fieldbus module specific parameters. For more information, see the User's manual of the appropriate fieldbus adapter module.
4) With DeviceNet, the control part is transmitted directly.
5) With DeviceNet, the actual value part is transmitted directly.

## Control word and Status word

The Control word is the principal means for controlling the drive from a fieldbus system. It is sent by the fieldbus master station to the drive through the adapter module. The drive switches between its states according to the bit-coded instructions in the Control word, and returns status information to the master in the Status word.

For the ABB Drives communication profile, the contents of the Control word and the Status word are detailed on pages 541 and 543 respectively. The drive states are presented in the state diagram (page 544). For other fieldbus-specific communication profiles, see the manual of the fieldbus adapter.

The contents of the Control word and the Status word are detailed on pages 541 and 543 respectively. The drive states are presented in the state diagram (page 544).

## Debugging the network words

If parameter 50.12 FBA A debug mode is set to Fast, the Control word received from the fieldbus is shown by parameter 50.13 FBA A control word, and the Status word transmitted to the fieldbus network by 50.16 FBA A status word. This "raw" data is very useful to determine if the fieldbus master is transmitting the correct data before handing control to the fieldbus network.

## References

References are 16 -bit words containing a sign bit and a 15 -bit integer. A negative reference (indicating reversed direction of rotation) is formed by calculating the two's complement from the corresponding positive reference.

ABB drives can receive control information from multiple sources including analog and digital inputs, the drive control panel and a fieldbus adapter module. In order to have the drive controlled through the fieldbus, the module must be defined as the source for control information such as reference. This is done using the source selection parameters in groups 22 Speed reference selection, 26 Torque reference chain and 28 Frequency reference chain.

## Debugging the network words

If parameter 50.12 FBA A debug mode is set to Fast, the references received from the fieldbus are displayed by 50.14 FBA A reference 1 and 50.15 FBA A reference 2.

## Scaling of references

Note: The scalings described below are for the ABB Drives communication profile. Fieldbus-specific communication profiles may use different scalings. For more information, see the manual of the fieldbus adapter.

The references are scaled as defined by parameters 46.01...46.04; which scaling is in use depends on the setting of 50.04 FBA A ref1 type and 50.05 FBA A ref2 type.

Fieldbus Drive
$\begin{array}{ll}  & 46.01 \text { (with speed reference) } \\ & 46.02 \text { (with frequency reference) } \end{array}$
$10000-46.03$ (with torque reference)
$0-0$
$-10000-$ - - (46.03) (with torque reference)
-(46.01) (with speed reference)
-2000 -(46.02) (with frequency reference)

The scaled references are shown by parameters 03.05 FB A reference 1 and 03.06 FB A reference 2.

## Actual values

Actual values are 16-bit words containing information on the operation of the drive. The types of the monitored signals are selected by parameters 50.07 FBA A actual 1 type and 50.08 FBA A actual 2 type.

## Debugging the network words

If parameter 50.12 FBA A debug mode is set to Fast, the actual values sent to the fieldbus are displayed by 50.17 FBA A actual value 1 and 50.18 FBA A actual value 2.

## Scaling of actual values

Note: The scalings described below are for the ABB Drives communication profile. Fieldbus-specific communication profiles may use different scalings. For more information, see the manual of the fieldbus adapter.

The actual values are scaled as defined by parameters $46.01 \ldots 46.04$; which scaling is in use depends on the setting of parameters 50.07 FBA A actual 1 type and 50.08 FBA A actual 2 type.


## Contents of the fieldbus Control word (ABB Drives profile)

The upper case boldface text refers to the states shown in the state diagram (page 544).

Bit	Name	Value	STATE/Description
0	Off1 control	1	Proceed to READY TO OPERATE.
		0	Stop along currently active deceleration ramp. Proceed to OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.
1	Off2 control	1	Continue operation (OFF2 inactive).
		0	Emergency OFF, coast to a stop. Proceed to OFF2 ACTIVE, proceed to SWITCH-ON INHIBITED.
2	Off3 control	1	Continue operation (OFF3 inactive).
		0	Emergency stop, stop within time defined by drive parameter. Proceed to OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED. WARNING: Ensure motor and driven machine can be stopped using this stop mode.
3	Run	1	Proceed to OPERATION ENABLED.   Note: Run enable signal must be active; see the drive documentation. If the drive is set to receive the Run enable signal from the fieldbus, this bit activates the signal.
		0	Inhibit operation. Proceed to OPERATION INHIBITED. See also parameter 06.18 Start inhibit status word (page 212).
4	Ramp out zero	1	Normal operation. Proceed to RAMP FUNCTION GENERATOR: OUTPUT ENABLED.
		0	Force Ramp function generator output to zero. The drive will immediately decelerate to zero speed (observing the torque limits).
5	Ramp hold	1	ramp function.   Proceed to RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED.
		0	Halt ramping (Ramp Function Generator output held).
6	Ramp in zero	1	Normal operation. Proceed to OPERATING.   Note: This bit is effective only if the fieldbus interface is set as the source for this signal by drive parameters.
		0	Force Ramp function generator input to zero.
7	Reset	0=>1	Fault reset if an active fault exists. Proceed to SWITCH-ON INHIBITED.   Note: This bit is effective only if the fieldbus interface is set as the source of the reset signal by drive parameters.
		0	Continue normal operation.
8	Inching 1	1	Accelerate to inching (jogging) setpoint 1.   Notes:   - Bits $4 \ldots 6$ must be 0 .   - See also section Rush control (page 165 ).
		0	Inching (jogging) 1 disabled.
9	Inching 2	1	Accelerate to inching (jogging) setpoint 2. See notes at bit 8.
		0	Inching (jogging) 2 disabled.
10	Remote cmd	1	Fieldbus control enabled.
		0	Control word and reference not getting through to the drive, except for bits $0 \ldots 2$.
11	Ext ctrl loc	1	Select External Control Location EXT2. Effective if control location is parameterized to be selected from fieldbus.
		0	Select External Control Location EXT1. Effective if control location is parameterized to be selected from fieldbus.


Bit	Name	Value	STATE/Description
12	User bit 0	1	
		0	
13	User bit 1	1	
		0	
14	User bit 2	1	
		0	
15	User bit 3	1	
		0	

## Contents of the fieldbus Status word (ABB Drives profile)

The upper case boldface text refers to the states shown in the state diagram (page 544).

Bit	Name	Value	STATE/Description
0	Ready to switch ON	1	READY TO SWITCH ON.
		0	NOT READY TO SWITCH ON.
1	Ready run	1	READY TO OPERATE.
		0	OFF1 ACTIVE.
2	Ready ref	1	OPERATION ENABLED.
		0	OPERATION INHIBITED.
			See also parameter 06.18 Start inhibit status word (page 212).
3	Tripped	1	FAULT.
		0	No fault.
4	Off 2 inactive	1	OFF2 inactive.
		0	OFF2 ACTIVE.
5	Off 3 inactive	1	OFF3 inactive.
		0	OFF3 ACTIVE.
6	Switch-on inhibited	1	SWITCH-ON INHIBITED.
		0	-
7	Warning	1	Warning active.
		0	No warning active.
8	At setpoint	1	OPERATING. Actual value equals reference $=$ is within tolerance limits (see parameters 46.21...46.23).
		0	Actual value differs from reference $=$ is outside tolerance limits.
9	Remote	1	Drive control location: REMOTE (EXT1 or EXT2).
		0	Drive control location: LOCAL.
10	Above limit	-	See bit 10 of 06.17 Drive status word 2.
11	User bit 0	-	See parameter 06.30 MSW bit 11 selection.
12	User bit 1	-	See parameter 06.31 MSW bit 12 selection.
13	User bit 2	-	See parameter 06.32 MSW bit 13 selection.
14	User bit 3	-	See parameter 06.33 MSW bit 14 selection.
15	Reserved		

The state diagram (ABB Drives profile)


## Setting up the drive for fieldbus control

1. Install the fieldbus adapter module mechanically and electrically according to the instructions given in the User's manual of the module.
2. Power up the drive.
3. Enable the communication between the drive and the fieldbus adapter module with parameter 50.01 FBA A enable.
4. With 50.02 FBA A comm loss func, select how the drive should react to a fieldbus communication break.
Note: This function monitors both the communication between the fieldbus master and the adapter module and the communication between the adapter module and the drive.
5. With 50.03 FBA A comm loss $t$ out, define the time between communication break detection and the selected action.
6. Select application-specific values for the rest of the parameters in group 50 Fieldbus adapter (FBA), starting from 50.04. Examples of appropriate values are shown in the tables below.
7. Set the fieldbus adapter module configuration parameters in group 51 FBA A settings. As a minimum, set the required node address and the communication profile.
8. Define the process data transferred to and from the drive in parameter groups 52 FBA A data in and 53 FBA A data out.
Note: Depending on the communication protocol and profile being used, the Control word and Status word may already be configured to be sent/received by the communication system.
9. Save the valid parameter values to permanent memory by setting parameter 96.07 Parameter save manually to Save.
10. Validate the settings made in parameter groups 51,52 and 53 by setting parameter 51.27 FBA A par refresh to Configure.
11. Configure control locations EXT1 and EXT2 to allow control and reference signals to come from the fieldbus. Examples of appropriate values are shown in the tables below.

## Parameter setting example: FPBA (PROFIBUS DP) with ABB Drives profile

This example shows how to configure a basic speed control application that uses the ABB Drives communication profile with PPO Type 2. The start/stop commands and reference are according to the ABB Drives profile, speed control mode.

The reference values sent over the fieldbus have to be scaled within the drive so they have the desired effect. The reference value $\pm 16384$ (4000h) corresponds to the range of speed set in parameter 46.01 Speed scaling (both forward and reverse directions). For example, if 46.01 is set to 480 rpm , then 4000 h sent over fieldbus will request 480 rpm .

Direction	PZD1	PZD2	PZD3	PZD4	PZD5	PZD6
Out	Control word	Speed reference	Acc time 1	Dec time 1		
In	Status word	Speed actual value	Motor current	DC voltage		

The table below gives the recommended drive parameter settings.

Drive parameter	Setting for ACX580 drives	Description
50.01 FBA A enable	1 = [slot number]	s communication between the drive and the fieldbus adapter module.
50.04 FBA A ref1 type	4 = Speed	Selects the fieldbus A reference 1 type and scaling.
50.07 FBA A actual 1 type	$0 \text { = Speed or }$   frequency	Selects the actual value type and scaling according to the currently active Ref1 mode defined in parameter 50.04.
51.01 FBA A type	1 = $\mathrm{FPBA}^{1)}$	Displays the type of the fieldbus adapter module.
51.02 Node address	$3^{2)}$	Defines the PROFIBUS node address of the fieldbus adapter module.
51.03 Baud rate	12000 ${ }^{1)}$	Displays the current baud rate on the PROFIBUS network in kbit/s.
51.04 MSG type	1 = $\mathrm{PPO}^{1)}$	Displays the telegram type selected by the PLC configuration tool.
51.05 Profile	1 = ABB Drives	Selects the Control word according to the ABB Drives profile (speed control mode).
51.07 RPBA mode	0 = Disabled	Disables the RPBA emulation mode.
52.01 FBA data in1	4 = SW 16bit ${ }^{1)}$	Status word
52.02 FBA data in2	5 = Act1 16bit	Actual value 1
52.03 FBA data in3	01.07 ${ }^{\text {2 }}$	Motor current
52.05 FBA data in5	01.11 ${ }^{\text {2) }}$	DC voltage
53.01 FBA data out1	1 = CW 16bit ${ }^{1)}$	Control word
53.02 FBA data out2	2 = Ref1 16bit	Reference 1 (speed)


Drive parameter	Setting for ACX580   drives	Description
53.03 FBA data out3	$23.12^{2)}$	Acceleration time 1
53.05 FBA data out5	$23.13^{2)}$	Deceleration time 1
51.27 FBA A par refresh	$\mathbf{1}=$ Configure	Validates the configuration parameter   settings.
19.12 Ext1 control mode	$\mathbf{2}=$ Speed	Selects speed control as the control   mode 1 for external control location   EXT1.
20.01 Ext1 commands	$\mathbf{1 2}=$ Fieldbus A	Selects fieldbus adapter A as the source   of the start and stop commands for   external control location EXT1.
20.02 Ext1 start trigger type	$\mathbf{1 ~ = ~ L e v e l ~}$	Selects a level-triggered start signal for   external control location EXT1.
22.11 Ext1 speed ref1	$\mathbf{4}=$ FB A ref1	Selects fieldbus A reference 1 as the   source for speed reference 1.

${ }^{1)}$ Read-only or automatically detected/set
2) Example

Control word:

- 477h (1143 decimal) $\rightarrow$ READY TO SWITCH ON
- 47Fh (1151 decimal) $\rightarrow$ OPERATING (Speed mode)

Start sequence:

- $476 \mathrm{~h} \rightarrow$ NOT READY TO SWITCH ON
- If MSW bit $0=1$ then
- $477 \mathrm{~h} \rightarrow$ READY TO SWITCH ON (Stopped)
- 47Fh $\rightarrow$ OPERATION (Running)

Stop sequence:

- 477h = Stop according to 21.03 Stop mode
- 47Eh = OFF1 ramp stop (Note: uninterruptable ramp stop)

Fault reset:

- Rising edge of MCW bit 7

Start after STO:
If 31.22 STO indication run/stop is not Fault/ Fault, check that 06.18 Start inhibit status word, bit 7 STO $=0$ before giving a start command.

## Automatic drive configuration for fieldbus control

The parameters set on module detection are shown in the table below. See also parameters 07.35 Drive configuration and 07.36 Drive configuration 2.

Option	50.01 FBA A enable	50.02 FBA A comm loss func	$\underset{\text { Par2 }}{51.02 \text { FBA A }}$	$\underset{\text { Par4 }}{\text { 51.04 FBA A }}$	$\begin{aligned} & \text { 51.05 FBA A } \\ & \text { Par5 } \end{aligned}$	$\underset{\text { Par6 }}{51.06 \text { FBA A }}$
FENA-21	1 (Enable)	0 (No action)	11	0	-	-
FECA-01	1 (Enable)	0 (No action)	0	-	-	-
FPBA-01	1 (Enable)	0 (No action)	-	-	1	-
FCAN-01	1 (Enable)	0 (No action)	-	-	0	-
FSCA-01	1 (Enable)	0 (No action)	-	-	-	10
FEIP-21	1 (Enable)	0 (No action)	100	0	-	-
FMBT-21	1 (Enable)	0 (No action)	0	0	-	-
FPNO-21	1 (Enable)	0 (No action)	11	0	-	-
FEPL-02	1 (Enable)	0 (No action)	-	-	-	-
FDNA-01	1 (Enable)	0 (No action)	-	-	-	-
FCNA-01	1 (Enable)	0 (No action)	-	-	-	-


Option	51.07 FBA A   Par7	51.21 FBA A   Par21	51.23 FBA A   Par23	51.24 FBA A   Par24	52.01 FBA   data in1	52.02 FBA   data in2
FENA-21	-	-	-	-	4	5
FECA-01	-	-	-	-	-	-
FPBA-01	-	-	-	-	4	5
FCAN-01	-	-	-	-	-	-
FSCA-01	1	-	-	-	-	
FEIP-21	-	-	128	128	-	-
FMBT-21	-	1	-	-	-	-
FBIP-21	-	-	-	-	-	-
FPNO-21	-	-	-	-	4	5
FEPL-02	-	-	-	-	-	-
FDNA-01	-	-	-	-	-	-
FCNA-01	-	-	-	-	-	-


Option	53.01 FBA   data out1	53.02 FBA   data out2
FENA-21	1	2
FECA-01	-	-
FPBA-01	1	2
FCAN-01	-	-
FSCA-01		
FEIP-21	-	-
FMBT-21	-	-
FPNO-21	1	2
FEPL-02	-	-


Option	53.01 FBA   data out1	53.02 FBA   data out2
FDNA-01	-	-
FCNA-01	-	-

## Control chain diagrams

## Contents of this chapter

The chapter presents the reference chains of the drive. The control chain diagrams can be used to trace how parameters interact and where parameters have an effect within the drive parameter system.

For a more general diagram, see section Operating modes of the drive (page 112).

Frequency reference selection


## Frequency reference modification



## Speed reference source selection I


19.11 Ext1/Ext2 selection Selection v

## Speed reference source selection II



## Speed reference ramping and shaping



Speed error calculation


## Speed feedback



## Speed controller



## Torque reference source selection and modification



## Reference selection for torque controller



## Torque limitation



## Process PID setpoint and feedback source selection



## Process PID controller



Note! Process PID parameter set 2 is also available. See parameter group 41.

## External PID setpoint and feedback source selection



## External PID controller



Direction lock


## PID trim auto connection



## Further information

## Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. $A$ listing of ABB sales, support and service contacts can be found by navigating to abb.com/searchchannels.

## Product training

For information on ABB product training, navigate to new.abb.com/service/training.

## Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

## Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at abb.com/drives/documents.
abb.com/drives

